| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a |
|
| Ref | Expression |
|---|---|
| con2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | 1, 2 | nsyl3 627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: nsyl 629 notnot 630 imanim 689 imnan 691 pm4.53r 752 ioran 753 pm3.1 755 oranim 782 xornbi 1397 exalim 1516 exnalim 1660 festino 2151 calemes 2161 fresison 2163 calemos 2164 fesapo 2165 nner 2371 necon2ai 2421 necon2bi 2422 neneqad 2446 ralexim 2489 rexalim 2490 eueq3dc 2938 elndif 3288 ssddif 3398 unssdif 3399 n0i 3457 preleq 4592 dcextest 4618 dmsn0el 5140 funtpg 5310 ftpg 5749 acexmidlemab 5919 reldmtpos 6320 nntri2 6561 nntri3 6564 nndceq 6566 inffiexmid 6976 ctssdccl 7186 mkvprop 7233 elni2 7398 renfdisj 8103 sup3exmid 9001 fzdisj 10144 sumrbdclem 11559 prodrbdclem 11753 lgsval2lem 15335 |
| Copyright terms: Public domain | W3C validator |