![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl3 626 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: nsyl 628 notnot 629 imanim 688 imnan 690 pm4.53r 751 ioran 752 pm3.1 754 oranim 781 xornbi 1386 exalim 1502 exnalim 1646 festino 2132 calemes 2142 fresison 2144 calemos 2145 fesapo 2146 nner 2351 necon2ai 2401 necon2bi 2402 neneqad 2426 ralexim 2469 rexalim 2470 eueq3dc 2912 elndif 3260 ssddif 3370 unssdif 3371 n0i 3429 preleq 4555 dcextest 4581 dmsn0el 5099 funtpg 5268 ftpg 5701 acexmidlemab 5869 reldmtpos 6254 nntri2 6495 nntri3 6498 nndceq 6500 inffiexmid 6906 ctssdccl 7110 mkvprop 7156 elni2 7313 renfdisj 8017 sup3exmid 8914 fzdisj 10052 sumrbdclem 11385 prodrbdclem 11579 lgsval2lem 14414 |
Copyright terms: Public domain | W3C validator |