| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a |
|
| Ref | Expression |
|---|---|
| con2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | 1, 2 | nsyl3 627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: nsyl 629 notnot 630 imanim 689 imnan 691 pm4.53r 752 ioran 753 pm3.1 755 oranim 782 xornbi 1405 exalim 1524 exnalim 1668 festino 2159 calemes 2169 fresison 2171 calemos 2172 fesapo 2173 nner 2379 necon2ai 2429 necon2bi 2430 neneqad 2454 ralexim 2497 rexalim 2498 eueq3dc 2946 elndif 3296 ssddif 3406 unssdif 3407 n0i 3465 preleq 4602 dcextest 4628 dmsn0el 5151 funtpg 5324 ftpg 5767 acexmidlemab 5937 reldmtpos 6338 nntri2 6579 nntri3 6582 nndceq 6584 inffiexmid 7002 ctssdccl 7212 mkvprop 7259 elni2 7426 renfdisj 8131 sup3exmid 9029 fzdisj 10173 sumrbdclem 11659 prodrbdclem 11853 lgsval2lem 15458 |
| Copyright terms: Public domain | W3C validator |