![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl3 627 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: nsyl 629 notnot 630 imanim 689 imnan 691 pm4.53r 752 ioran 753 pm3.1 755 oranim 782 xornbi 1397 exalim 1513 exnalim 1657 festino 2148 calemes 2158 fresison 2160 calemos 2161 fesapo 2162 nner 2368 necon2ai 2418 necon2bi 2419 neneqad 2443 ralexim 2486 rexalim 2487 eueq3dc 2935 elndif 3284 ssddif 3394 unssdif 3395 n0i 3453 preleq 4588 dcextest 4614 dmsn0el 5136 funtpg 5306 ftpg 5743 acexmidlemab 5913 reldmtpos 6308 nntri2 6549 nntri3 6552 nndceq 6554 inffiexmid 6964 ctssdccl 7172 mkvprop 7219 elni2 7376 renfdisj 8081 sup3exmid 8978 fzdisj 10121 sumrbdclem 11523 prodrbdclem 11717 lgsval2lem 15167 |
Copyright terms: Public domain | W3C validator |