ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2i Unicode version

Theorem con2i 630
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.)
Hypothesis
Ref Expression
con2i.a  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
con2i  |-  ( ps 
->  -.  ph )

Proof of Theorem con2i
StepHypRef Expression
1 con2i.a . 2  |-  ( ph  ->  -.  ps )
2 id 19 . 2  |-  ( ps 
->  ps )
31, 2nsyl3 629 1  |-  ( ps 
->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 617  ax-in2 618
This theorem is referenced by:  nsyl  631  notnot  632  imanim  692  imnan  694  pm4.53r  756  ioran  757  pm3.1  759  oranim  786  xornbi  1428  exalim  1548  exnalim  1692  festino  2184  calemes  2194  fresison  2196  calemos  2197  fesapo  2198  nner  2404  necon2ai  2454  necon2bi  2455  neneqad  2479  ralexim  2522  rexalim  2523  eueq3dc  2977  elndif  3328  ssddif  3438  unssdif  3439  n0i  3497  preleq  4646  dcextest  4672  dmsn0el  5197  funtpg  5371  ftpg  5822  acexmidlemab  5994  reldmtpos  6397  nntri2  6638  nntri3  6641  nndceq  6643  inffiexmid  7064  ctssdccl  7274  mkvprop  7321  elni2  7497  renfdisj  8202  sup3exmid  9100  fzdisj  10244  sumrbdclem  11883  prodrbdclem  12077  lgsval2lem  15683
  Copyright terms: Public domain W3C validator