| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a |
|
| Ref | Expression |
|---|---|
| con2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | 1, 2 | nsyl3 627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: nsyl 629 notnot 630 imanim 690 imnan 692 pm4.53r 753 ioran 754 pm3.1 756 oranim 783 xornbi 1406 exalim 1526 exnalim 1670 festino 2162 calemes 2172 fresison 2174 calemos 2175 fesapo 2176 nner 2382 necon2ai 2432 necon2bi 2433 neneqad 2457 ralexim 2500 rexalim 2501 eueq3dc 2954 elndif 3305 ssddif 3415 unssdif 3416 n0i 3474 preleq 4621 dcextest 4647 dmsn0el 5171 funtpg 5344 ftpg 5791 acexmidlemab 5961 reldmtpos 6362 nntri2 6603 nntri3 6606 nndceq 6608 inffiexmid 7029 ctssdccl 7239 mkvprop 7286 elni2 7462 renfdisj 8167 sup3exmid 9065 fzdisj 10209 sumrbdclem 11803 prodrbdclem 11997 lgsval2lem 15602 |
| Copyright terms: Public domain | W3C validator |