| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a |
|
| Ref | Expression |
|---|---|
| con2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | 1, 2 | nsyl3 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: nsyl 631 notnot 632 imanim 692 imnan 694 pm4.53r 756 ioran 757 pm3.1 759 oranim 786 xornbi 1428 exalim 1548 exnalim 1692 festino 2184 calemes 2194 fresison 2196 calemos 2197 fesapo 2198 nner 2404 necon2ai 2454 necon2bi 2455 neneqad 2479 ralexim 2522 rexalim 2523 eueq3dc 2977 elndif 3328 ssddif 3438 unssdif 3439 n0i 3497 preleq 4646 dcextest 4672 dmsn0el 5197 funtpg 5371 ftpg 5822 acexmidlemab 5994 reldmtpos 6397 nntri2 6638 nntri3 6641 nndceq 6643 inffiexmid 7064 ctssdccl 7274 mkvprop 7321 elni2 7497 renfdisj 8202 sup3exmid 9100 fzdisj 10244 sumrbdclem 11883 prodrbdclem 12077 lgsval2lem 15683 |
| Copyright terms: Public domain | W3C validator |