![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl3 626 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: nsyl 628 notnot 629 imanim 688 imnan 690 pm4.53r 751 ioran 752 pm3.1 754 oranim 781 xornbi 1386 exalim 1502 exnalim 1646 festino 2132 calemes 2142 fresison 2144 calemos 2145 fesapo 2146 nner 2351 necon2ai 2401 necon2bi 2402 neneqad 2426 ralexim 2469 rexalim 2470 eueq3dc 2911 elndif 3259 ssddif 3369 unssdif 3370 n0i 3428 preleq 4554 dcextest 4580 dmsn0el 5098 funtpg 5267 ftpg 5700 acexmidlemab 5868 reldmtpos 6253 nntri2 6494 nntri3 6497 nndceq 6499 inffiexmid 6905 ctssdccl 7109 mkvprop 7155 elni2 7312 renfdisj 8016 sup3exmid 8913 fzdisj 10051 sumrbdclem 11384 prodrbdclem 11578 lgsval2lem 14381 |
Copyright terms: Public domain | W3C validator |