| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a |
|
| Ref | Expression |
|---|---|
| con2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a |
. 2
| |
| 2 | id 19 |
. 2
| |
| 3 | 1, 2 | nsyl3 627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: nsyl 629 notnot 630 imanim 690 imnan 692 pm4.53r 753 ioran 754 pm3.1 756 oranim 783 xornbi 1406 exalim 1525 exnalim 1669 festino 2160 calemes 2170 fresison 2172 calemos 2173 fesapo 2174 nner 2380 necon2ai 2430 necon2bi 2431 neneqad 2455 ralexim 2498 rexalim 2499 eueq3dc 2947 elndif 3297 ssddif 3407 unssdif 3408 n0i 3466 preleq 4603 dcextest 4629 dmsn0el 5152 funtpg 5325 ftpg 5768 acexmidlemab 5938 reldmtpos 6339 nntri2 6580 nntri3 6583 nndceq 6585 inffiexmid 7003 ctssdccl 7213 mkvprop 7260 elni2 7427 renfdisj 8132 sup3exmid 9030 fzdisj 10174 sumrbdclem 11688 prodrbdclem 11882 lgsval2lem 15487 |
| Copyright terms: Public domain | W3C validator |