ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbidc Unicode version

Theorem xornbidc 1381
Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.)
Assertion
Ref Expression
xornbidc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  \/_  ps ) 
<->  -.  ( ph  <->  ps )
) ) )

Proof of Theorem xornbidc
StepHypRef Expression
1 df-xor 1366 . . 3  |-  ( (
ph  \/_  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) ) )
2 xor2dc 1380 . . . 4  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( ph  <->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps )
) ) ) )
32imp 123 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph 
<->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\  ps ) ) ) )
41, 3bitr4id 198 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/_ 
ps )  <->  -.  ( ph 
<->  ps ) ) )
54ex 114 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  \/_  ps ) 
<->  -.  ( ph  <->  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    \/_ wxo 1365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-xor 1366
This theorem is referenced by:  xordc  1382  xordidc  1389
  Copyright terms: Public domain W3C validator