| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xornbidc | GIF version | ||
| Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.) |
| Ref | Expression |
|---|---|
| xornbidc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1387 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | xor2dc 1401 | . . . 4 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))))) | |
| 3 | 2 | imp 124 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)))) |
| 4 | 1, 3 | bitr4id 199 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓))) |
| 5 | 4 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-xor 1387 |
| This theorem is referenced by: xordc 1403 xordidc 1410 |
| Copyright terms: Public domain | W3C validator |