ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xornbidc GIF version

Theorem xornbidc 1352
Description: Exclusive or is equivalent to negated biconditional for decidable propositions. (Contributed by Jim Kingdon, 27-Apr-2018.)
Assertion
Ref Expression
xornbidc (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑𝜓))))

Proof of Theorem xornbidc
StepHypRef Expression
1 xor2dc 1351 . . . 4 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))))
21imp 123 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
3 df-xor 1337 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
42, 3syl6rbbr 198 . 2 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑𝜓)))
54ex 114 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  DECID wdc 802  wxo 1336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-xor 1337
This theorem is referenced by:  xordc  1353  xordidc  1360
  Copyright terms: Public domain W3C validator