Proof of Theorem xordidc
Step | Hyp | Ref
| Expression |
1 | | dcbi 921 |
. . . . 5
DECID DECID DECID
|
2 | 1 | imp 123 |
. . . 4
DECID DECID
DECID
|
3 | | annimdc 922 |
. . . . . 6
DECID DECID
|
4 | 3 | imp 123 |
. . . . 5
DECID DECID
|
5 | | pm5.32 449 |
. . . . . 6
|
6 | 5 | notbii 658 |
. . . . 5
|
7 | 4, 6 | bitrdi 195 |
. . . 4
DECID DECID
|
8 | 2, 7 | sylan2 284 |
. . 3
DECID DECID
DECID
|
9 | | xornbidc 1373 |
. . . . . 6
DECID DECID
|
10 | 9 | imp 123 |
. . . . 5
DECID DECID
|
11 | 10 | adantl 275 |
. . . 4
DECID DECID
DECID
|
12 | 11 | anbi2d 460 |
. . 3
DECID DECID
DECID
|
13 | | dcan 919 |
. . . . . 6
DECID DECID DECID |
14 | 13 | imp 123 |
. . . . 5
DECID DECID DECID
|
15 | 14 | adantrr 471 |
. . . 4
DECID DECID
DECID DECID |
16 | | dcan 919 |
. . . . . 6
DECID DECID DECID |
17 | 16 | imp 123 |
. . . . 5
DECID DECID DECID
|
18 | 17 | adantrl 470 |
. . . 4
DECID DECID
DECID DECID |
19 | | xornbidc 1373 |
. . . 4
DECID DECID
|
20 | 15, 18, 19 | sylc 62 |
. . 3
DECID DECID
DECID
|
21 | 8, 12, 20 | 3bitr4d 219 |
. 2
DECID DECID
DECID
|
22 | 21 | exp32 363 |
1
DECID DECID DECID
|