ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ellim GIF version

Theorem 0ellim 4400
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim (Lim 𝐴 → ∅ ∈ 𝐴)

Proof of Theorem 0ellim
StepHypRef Expression
1 dflim2 4372 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
21simp2bi 1013 1 (Lim 𝐴 → ∅ ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  c0 3424   cuni 3811  Ord word 4364  Lim wlim 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980  df-ilim 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator