ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4221
Description: Alias for df-ilim 4220. Use it instead of df-ilim 4220 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4220 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 104  w3a 927   = wceq 1296  wcel 1445  c0 3302   cuni 3675  Ord word 4213  Lim wlim 4215
This theorem depends on definitions:  df-ilim 4220
This theorem is referenced by:  limeq  4228  nlim0  4245  limord  4246  limuni  4247  0ellim  4249  limon  4358  limom  4456
  Copyright terms: Public domain W3C validator