ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4355
Description: Alias for df-ilim 4354. Use it instead of df-ilim 4354 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4354 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 104  w3a 973   = wceq 1348  wcel 2141  c0 3414   cuni 3796  Ord word 4347  Lim wlim 4349
This theorem depends on definitions:  df-ilim 4354
This theorem is referenced by:  limeq  4362  nlim0  4379  limord  4380  limuni  4381  0ellim  4383  limon  4497  limom  4598
  Copyright terms: Public domain W3C validator