ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4424
Description: Alias for df-ilim 4423. Use it instead of df-ilim 4423 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4423 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 981   = wceq 1373  wcel 2177  c0 3464   cuni 3855  Ord word 4416  Lim wlim 4418
This theorem depends on definitions:  df-ilim 4423
This theorem is referenced by:  limeq  4431  nlim0  4448  limord  4449  limuni  4450  0ellim  4452  limon  4568  limom  4669
  Copyright terms: Public domain W3C validator