ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4460
Description: Alias for df-ilim 4459. Use it instead of df-ilim 4459 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4459 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 1002   = wceq 1395  wcel 2200  c0 3491   cuni 3887  Ord word 4452  Lim wlim 4454
This theorem depends on definitions:  df-ilim 4459
This theorem is referenced by:  limeq  4467  nlim0  4484  limord  4485  limuni  4486  0ellim  4488  limon  4604  limom  4705
  Copyright terms: Public domain W3C validator