ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4164
Description: Alias for df-ilim 4163. Use it instead of df-ilim 4163 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4163 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 103  w3a 922   = wceq 1287  wcel 1436  c0 3272   cuni 3630  Ord word 4156  Lim wlim 4158
This theorem depends on definitions:  df-ilim 4163
This theorem is referenced by:  limeq  4171  nlim0  4188  limord  4189  limuni  4190  0ellim  4192  limon  4296  limom  4394
  Copyright terms: Public domain W3C validator