ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4348
Description: Alias for df-ilim 4347. Use it instead of df-ilim 4347 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4347 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 104  w3a 968   = wceq 1343  wcel 2136  c0 3409   cuni 3789  Ord word 4340  Lim wlim 4342
This theorem depends on definitions:  df-ilim 4347
This theorem is referenced by:  limeq  4355  nlim0  4372  limord  4373  limuni  4374  0ellim  4376  limon  4490  limom  4591
  Copyright terms: Public domain W3C validator