ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4401
Description: Alias for df-ilim 4400. Use it instead of df-ilim 4400 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4400 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 980   = wceq 1364  wcel 2164  c0 3446   cuni 3835  Ord word 4393  Lim wlim 4395
This theorem depends on definitions:  df-ilim 4400
This theorem is referenced by:  limeq  4408  nlim0  4425  limord  4426  limuni  4427  0ellim  4429  limon  4545  limom  4646
  Copyright terms: Public domain W3C validator