ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4382
Description: Alias for df-ilim 4381. Use it instead of df-ilim 4381 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4381 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 979   = wceq 1363  wcel 2158  c0 3434   cuni 3821  Ord word 4374  Lim wlim 4376
This theorem depends on definitions:  df-ilim 4381
This theorem is referenced by:  limeq  4389  nlim0  4406  limord  4407  limuni  4408  0ellim  4410  limon  4524  limom  4625
  Copyright terms: Public domain W3C validator