ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4160
Description: Alias for df-ilim 4159. Use it instead of df-ilim 4159 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4159 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 103  w3a 920   = wceq 1285  wcel 1434  c0 3269   cuni 3627  Ord word 4152  Lim wlim 4154
This theorem depends on definitions:  df-ilim 4159
This theorem is referenced by:  limeq  4167  nlim0  4184  limord  4185  limuni  4186  0ellim  4188  limon  4292  limom  4390
  Copyright terms: Public domain W3C validator