ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflim2 GIF version

Theorem dflim2 4371
Description: Alias for df-ilim 4370. Use it instead of df-ilim 4370 for naming consistency with set.mm. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-ilim 4370 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 978   = wceq 1353  wcel 2148  c0 3423   cuni 3810  Ord word 4363  Lim wlim 4365
This theorem depends on definitions:  df-ilim 4370
This theorem is referenced by:  limeq  4378  nlim0  4395  limord  4396  limuni  4397  0ellim  4399  limon  4513  limom  4614
  Copyright terms: Public domain W3C validator