ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ellim Unicode version

Theorem 0ellim 4429
Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
0ellim  |-  ( Lim 
A  ->  (/)  e.  A
)

Proof of Theorem 0ellim
StepHypRef Expression
1 dflim2 4401 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
21simp2bi 1015 1  |-  ( Lim 
A  ->  (/)  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   (/)c0 3446   U.cuni 3835   Ord word 4393   Lim wlim 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-ilim 4400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator