ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni2 GIF version

Theorem limuni2 4382
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 4381 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 4362 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 14 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 175 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348   cuni 3796  Lim wlim 4349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-ilim 4354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator