![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > limuni2 | GIF version |
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
Ref | Expression |
---|---|
limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 4234 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | limeq 4215 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
4 | 3 | ibi 175 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1290 ∪ cuni 3661 Lim wlim 4202 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-in 3008 df-ss 3015 df-uni 3662 df-tr 3945 df-iord 4204 df-ilim 4207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |