Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limuni2 | GIF version |
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
Ref | Expression |
---|---|
limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 4390 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | limeq 4371 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
4 | 3 | ibi 176 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∪ cuni 3805 Lim wlim 4358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-in 3133 df-ss 3140 df-uni 3806 df-tr 4097 df-iord 4360 df-ilim 4363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |