ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni2 GIF version

Theorem limuni2 4399
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 4398 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 4379 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 14 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 176 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353   cuni 3811  Lim wlim 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-ilim 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator