| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limuni2 | GIF version | ||
| Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
| Ref | Expression |
|---|---|
| limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 4450 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | limeq 4431 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
| 4 | 3 | ibi 176 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∪ cuni 3855 Lim wlim 4418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-in 3176 df-ss 3183 df-uni 3856 df-tr 4150 df-iord 4420 df-ilim 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |