| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2bi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp2d 1015 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: 0ellim 4466 smodm 6407 erdm 6660 ixpfn 6821 dif1en 7009 eluzelz 9699 elfz3nn0 10279 ef01bndlem 12233 sin01bnd 12234 cos01bnd 12235 sin01gt0 12239 bitsss 12422 gznegcl 12864 gzcjcl 12865 gzaddcl 12866 gzmulcl 12867 gzabssqcl 12870 4sqlem4a 12880 xpsff1o 13348 subgss 13677 rngmgp 13865 srgmgp 13897 ringmgp 13931 lmodring 14224 lmodprop2d 14277 reeff1oleme 15411 cosq14gt0 15471 cosq23lt0 15472 coseq0q4123 15473 coseq00topi 15474 coseq0negpitopi 15475 cosq34lt1 15489 cos02pilt1 15490 ioocosf1o 15493 gausslemma2dlem1a 15702 2sqlem2 15759 2sqlem3 15761 |
| Copyright terms: Public domain | W3C validator |