| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2bi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp2d 1034 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 0ellim 4489 smodm 6443 erdm 6698 ixpfn 6859 dif1en 7049 eluzelz 9739 elfz3nn0 10319 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 sin01gt0 12281 bitsss 12464 gznegcl 12906 gzcjcl 12907 gzaddcl 12908 gzmulcl 12909 gzabssqcl 12912 4sqlem4a 12922 xpsff1o 13390 subgss 13719 rngmgp 13907 srgmgp 13939 ringmgp 13973 lmodring 14267 lmodprop2d 14320 reeff1oleme 15454 cosq14gt0 15514 cosq23lt0 15515 coseq0q4123 15516 coseq00topi 15517 coseq0negpitopi 15518 cosq34lt1 15532 cos02pilt1 15533 ioocosf1o 15536 gausslemma2dlem1a 15745 2sqlem2 15802 2sqlem3 15804 |
| Copyright terms: Public domain | W3C validator |