Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2bi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp2d 1000 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 0ellim 4376 smodm 6259 erdm 6511 ixpfn 6670 dif1en 6845 eluzelz 9475 elfz3nn0 10050 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 sin01gt0 11702 gznegcl 12305 gzcjcl 12306 gzaddcl 12307 gzmulcl 12308 gzabssqcl 12311 4sqlem4a 12321 reeff1oleme 13333 cosq14gt0 13393 cosq23lt0 13394 coseq0q4123 13395 coseq00topi 13396 coseq0negpitopi 13397 cosq34lt1 13411 cos02pilt1 13412 ioocosf1o 13415 2sqlem2 13591 2sqlem3 13593 |
Copyright terms: Public domain | W3C validator |