| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2bi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp2d 1013 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 0ellim 4449 smodm 6384 erdm 6637 ixpfn 6798 dif1en 6983 eluzelz 9664 elfz3nn0 10244 ef01bndlem 12111 sin01bnd 12112 cos01bnd 12113 sin01gt0 12117 bitsss 12300 gznegcl 12742 gzcjcl 12743 gzaddcl 12744 gzmulcl 12745 gzabssqcl 12748 4sqlem4a 12758 xpsff1o 13225 subgss 13554 rngmgp 13742 srgmgp 13774 ringmgp 13808 lmodring 14101 lmodprop2d 14154 reeff1oleme 15288 cosq14gt0 15348 cosq23lt0 15349 coseq0q4123 15350 coseq00topi 15351 coseq0negpitopi 15352 cosq34lt1 15366 cos02pilt1 15367 ioocosf1o 15370 gausslemma2dlem1a 15579 2sqlem2 15636 2sqlem3 15638 |
| Copyright terms: Public domain | W3C validator |