ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2bi GIF version

Theorem simp2bi 1016
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp2bi (𝜑𝜒)

Proof of Theorem simp2bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 120 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp2d 1013 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  0ellim  4449  smodm  6384  erdm  6637  ixpfn  6798  dif1en  6983  eluzelz  9664  elfz3nn0  10244  ef01bndlem  12111  sin01bnd  12112  cos01bnd  12113  sin01gt0  12117  bitsss  12300  gznegcl  12742  gzcjcl  12743  gzaddcl  12744  gzmulcl  12745  gzabssqcl  12748  4sqlem4a  12758  xpsff1o  13225  subgss  13554  rngmgp  13742  srgmgp  13774  ringmgp  13808  lmodring  14101  lmodprop2d  14154  reeff1oleme  15288  cosq14gt0  15348  cosq23lt0  15349  coseq0q4123  15350  coseq00topi  15351  coseq0negpitopi  15352  cosq34lt1  15366  cos02pilt1  15367  ioocosf1o  15370  gausslemma2dlem1a  15579  2sqlem2  15636  2sqlem3  15638
  Copyright terms: Public domain W3C validator