ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2bi GIF version

Theorem simp2bi 1003
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp2bi (𝜑𝜒)

Proof of Theorem simp2bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 119 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp2d 1000 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  0ellim  4376  smodm  6259  erdm  6511  ixpfn  6670  dif1en  6845  eluzelz  9475  elfz3nn0  10050  ef01bndlem  11697  sin01bnd  11698  cos01bnd  11699  sin01gt0  11702  gznegcl  12305  gzcjcl  12306  gzaddcl  12307  gzmulcl  12308  gzabssqcl  12311  4sqlem4a  12321  reeff1oleme  13333  cosq14gt0  13393  cosq23lt0  13394  coseq0q4123  13395  coseq00topi  13396  coseq0negpitopi  13397  cosq34lt1  13411  cos02pilt1  13412  ioocosf1o  13415  2sqlem2  13591  2sqlem3  13593
  Copyright terms: Public domain W3C validator