| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Ref | Expression | 
|---|---|
| simp2bi | ⊢ (𝜑 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| 3 | 2 | simp2d 1012 | 1 ⊢ (𝜑 → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 0ellim 4433 smodm 6349 erdm 6602 ixpfn 6763 dif1en 6940 eluzelz 9610 elfz3nn0 10190 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 bitsss 12110 gznegcl 12544 gzcjcl 12545 gzaddcl 12546 gzmulcl 12547 gzabssqcl 12550 4sqlem4a 12560 xpsff1o 12992 subgss 13304 rngmgp 13492 srgmgp 13524 ringmgp 13558 lmodring 13851 lmodprop2d 13904 reeff1oleme 15008 cosq14gt0 15068 cosq23lt0 15069 coseq0q4123 15070 coseq00topi 15071 coseq0negpitopi 15072 cosq34lt1 15086 cos02pilt1 15087 ioocosf1o 15090 gausslemma2dlem1a 15299 2sqlem2 15356 2sqlem3 15358 | 
| Copyright terms: Public domain | W3C validator |