| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2bi | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp2d 1012 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 0ellim 4434 smodm 6358 erdm 6611 ixpfn 6772 dif1en 6949 eluzelz 9629 elfz3nn0 10209 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 bitsss 12129 gznegcl 12571 gzcjcl 12572 gzaddcl 12573 gzmulcl 12574 gzabssqcl 12577 4sqlem4a 12587 xpsff1o 13053 subgss 13382 rngmgp 13570 srgmgp 13602 ringmgp 13636 lmodring 13929 lmodprop2d 13982 reeff1oleme 15116 cosq14gt0 15176 cosq23lt0 15177 coseq0q4123 15178 coseq00topi 15179 coseq0negpitopi 15180 cosq34lt1 15194 cos02pilt1 15195 ioocosf1o 15198 gausslemma2dlem1a 15407 2sqlem2 15464 2sqlem3 15466 |
| Copyright terms: Public domain | W3C validator |