ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27h GIF version

Theorem 19.27h 1548
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.27h.1 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
19.27h (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))

Proof of Theorem 19.27h
StepHypRef Expression
1 19.26 1469 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.27h.1 . . . 4 (𝜓 → ∀𝑥𝜓)
3219.3h 1541 . . 3 (∀𝑥𝜓𝜓)
43anbi2i 453 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
51, 4bitri 183 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  aaanh  1574  19.27v  1887
  Copyright terms: Public domain W3C validator