| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > aaanh | GIF version | ||
| Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| aaanh.1 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| aaanh.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| aaanh | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aaanh.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | 19.28h 1576 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓)) | 
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓)) | 
| 4 | aaanh.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 5 | 4 | hbal 1491 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | 
| 6 | 5 | 19.27h 1574 | . 2 ⊢ (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | 
| 7 | 3, 6 | bitri 184 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mo23 2086 2eu4 2138 | 
| Copyright terms: Public domain | W3C validator |