ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 GIF version

Theorem 19.26 1503
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1477 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1477 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 306 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 19 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1481 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 126 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1504  19.26-3an  1505  albiim  1509  2albiim  1510  hband  1511  hban  1569  19.27h  1582  19.27  1583  19.28h  1584  19.28  1585  nford  1589  nfand  1590  equsexd  1751  equveli  1781  sbanv  1912  2eu4  2146  bm1.1  2189  r19.26m  2636  unss  3346  ralunb  3353  ssin  3394  intun  3915  intpr  3916  eqrelrel  4774  relop  4826  eqoprab2b  5993  dfer2  6611  omniwomnimkv  7251
  Copyright terms: Public domain W3C validator