ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 GIF version

Theorem 19.26 1479
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1453 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1453 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 306 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 19 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1457 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 126 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1480  19.26-3an  1481  albiim  1485  2albiim  1486  hband  1487  hban  1545  19.27h  1558  19.27  1559  19.28h  1560  19.28  1561  nford  1565  nfand  1566  equsexd  1727  equveli  1757  sbanv  1887  2eu4  2117  bm1.1  2160  r19.26m  2606  unss  3307  ralunb  3314  ssin  3355  intun  3871  intpr  3872  eqrelrel  4721  relop  4770  eqoprab2b  5923  dfer2  6526  omniwomnimkv  7155
  Copyright terms: Public domain W3C validator