ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 GIF version

Theorem 19.26 1527
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4 ((𝜑𝜓) → 𝜑)
21alimi 1501 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜑)
3 simpr 110 . . . 4 ((𝜑𝜓) → 𝜓)
43alimi 1501 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑥𝜓)
52, 4jca 306 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
6 id 19 . . 3 ((𝜑𝜓) → (𝜑𝜓))
76alanimi 1505 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
85, 7impbii 126 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1528  19.26-3an  1529  albiim  1533  2albiim  1534  hband  1535  hban  1593  19.27h  1606  19.27  1607  19.28h  1608  19.28  1609  nford  1613  nfand  1614  equsexd  1775  equveli  1805  sbanv  1936  2eu4  2171  bm1.1  2214  r19.26m  2662  unss  3378  ralunb  3385  ssin  3426  intun  3953  intpr  3954  eqrelrel  4819  relop  4871  eqoprab2b  6061  dfer2  6679  omniwomnimkv  7330
  Copyright terms: Public domain W3C validator