ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29r2 GIF version

Theorem 19.29r2 1610
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
19.29r2 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))

Proof of Theorem 19.29r2
StepHypRef Expression
1 19.29r 1609 . 2 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓))
2 19.29r 1609 . . 3 ((∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑦(𝜑𝜓))
32eximi 1588 . 2 (∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
41, 3syl 14 1 ((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator