| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximi | GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1645 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1497 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximi 1647 eximii 1648 exsimpl 1663 exsimpr 1664 19.29r2 1668 19.29x 1669 19.35-1 1670 19.43 1674 19.40 1677 19.40-2 1678 exanaliim 1693 19.12 1711 equs4 1771 cbvexh 1801 equvini 1804 sbimi 1810 equs5e 1841 exdistrfor 1846 equs45f 1848 sbcof2 1856 sbequi 1885 spsbe 1888 sbidm 1897 cbvexdh 1973 eumo0 2108 mor 2120 euan 2134 eupickb 2159 2eu2ex 2167 2exeu 2170 rexex 2576 reximi2 2626 cgsexg 2835 gencbvex 2847 gencbval 2849 vtocl3 2857 eqvinc 2926 eqvincg 2927 mosubt 2980 rexm 3591 prmg 3789 bm1.3ii 4205 a9evsep 4206 axnul 4209 reldmm 4942 elrelimasn 5094 dminss 5143 imainss 5144 euiotaex 5295 imadiflem 5400 funimaexglem 5404 brprcneu 5622 fv3 5652 relelfvdm 5661 ssimaex 5697 oprabid 6039 brabvv 6056 uchoice 6289 ecexr 6693 enssdom 6921 fidcenumlemim 7127 subhalfnqq 7609 prarloc 7698 ltexprlemopl 7796 ltexprlemlol 7797 ltexprlemopu 7798 ltexprlemupu 7799 fnpr2ob 13381 fngsum 13429 igsumvalx 13430 bdbm1.3ii 16278 bj-inex 16294 bj-2inf 16325 |
| Copyright terms: Public domain | W3C validator |