| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximi | GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1623 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximi 1625 eximii 1626 exsimpl 1641 exsimpr 1642 19.29r2 1646 19.29x 1647 19.35-1 1648 19.43 1652 19.40 1655 19.40-2 1656 exanaliim 1671 19.12 1689 equs4 1749 cbvexh 1779 equvini 1782 sbimi 1788 equs5e 1819 exdistrfor 1824 equs45f 1826 sbcof2 1834 sbequi 1863 spsbe 1866 sbidm 1875 cbvexdh 1951 eumo0 2086 mor 2097 euan 2111 eupickb 2136 2eu2ex 2144 2exeu 2147 rexex 2553 reximi2 2603 cgsexg 2808 gencbvex 2820 gencbval 2822 vtocl3 2830 eqvinc 2897 eqvincg 2898 mosubt 2951 rexm 3561 prmg 3756 bm1.3ii 4169 a9evsep 4170 axnul 4173 elrelimasn 5053 dminss 5102 imainss 5103 euiotaex 5253 imadiflem 5358 funimaexglem 5362 brprcneu 5576 fv3 5606 relelfvdm 5615 ssimaex 5647 oprabid 5983 brabvv 5998 uchoice 6230 ecexr 6632 enssdom 6860 fidcenumlemim 7061 subhalfnqq 7534 prarloc 7623 ltexprlemopl 7721 ltexprlemlol 7722 ltexprlemopu 7723 ltexprlemupu 7724 fnpr2ob 13216 fngsum 13264 igsumvalx 13265 bdbm1.3ii 15901 bj-inex 15917 bj-2inf 15948 |
| Copyright terms: Public domain | W3C validator |