![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximi | GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1610 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1462 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2eximi 1612 eximii 1613 exsimpl 1628 exsimpr 1629 19.29r2 1633 19.29x 1634 19.35-1 1635 19.43 1639 19.40 1642 19.40-2 1643 exanaliim 1658 19.12 1676 equs4 1736 cbvexh 1766 equvini 1769 sbimi 1775 equs5e 1806 exdistrfor 1811 equs45f 1813 sbcof2 1821 sbequi 1850 spsbe 1853 sbidm 1862 cbvexdh 1938 eumo0 2073 mor 2084 euan 2098 eupickb 2123 2eu2ex 2131 2exeu 2134 rexex 2540 reximi2 2590 cgsexg 2795 gencbvex 2807 gencbval 2809 vtocl3 2817 eqvinc 2884 eqvincg 2885 mosubt 2938 rexm 3547 prmg 3740 bm1.3ii 4151 a9evsep 4152 axnul 4155 elrelimasn 5032 dminss 5081 imainss 5082 euiotaex 5232 imadiflem 5334 funimaexglem 5338 brprcneu 5548 fv3 5578 relelfvdm 5587 ssimaex 5619 oprabid 5951 brabvv 5965 uchoice 6192 ecexr 6594 enssdom 6818 fidcenumlemim 7013 subhalfnqq 7476 prarloc 7565 ltexprlemopl 7663 ltexprlemlol 7664 ltexprlemopu 7665 ltexprlemupu 7666 fnpr2ob 12926 fngsum 12974 igsumvalx 12975 bdbm1.3ii 15453 bj-inex 15469 bj-2inf 15500 |
Copyright terms: Public domain | W3C validator |