Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximi | GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1587 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1439 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximi 1589 eximii 1590 exsimpl 1605 exsimpr 1606 19.29r2 1610 19.29x 1611 19.35-1 1612 19.43 1616 19.40 1619 19.40-2 1620 exanaliim 1635 19.12 1653 equs4 1713 cbvexh 1743 equvini 1746 sbimi 1752 equs5e 1783 exdistrfor 1788 equs45f 1790 sbcof2 1798 sbequi 1827 spsbe 1830 sbidm 1839 cbvexdh 1914 eumo0 2045 mor 2056 euan 2070 eupickb 2095 2eu2ex 2103 2exeu 2106 rexex 2512 reximi2 2562 cgsexg 2761 gencbvex 2772 gencbval 2774 vtocl3 2782 eqvinc 2849 eqvincg 2850 mosubt 2903 rexm 3508 prmg 3697 bm1.3ii 4103 a9evsep 4104 axnul 4107 dminss 5018 imainss 5019 euiotaex 5169 imadiflem 5267 funimaexglem 5271 brprcneu 5479 fv3 5509 relelfvdm 5518 ssimaex 5547 oprabid 5874 brabvv 5888 ecexr 6506 enssdom 6728 fidcenumlemim 6917 subhalfnqq 7355 prarloc 7444 ltexprlemopl 7542 ltexprlemlol 7543 ltexprlemopu 7544 ltexprlemupu 7545 bdbm1.3ii 13773 bj-inex 13789 bj-2inf 13820 |
Copyright terms: Public domain | W3C validator |