| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximi | GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1625 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1477 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximi 1627 eximii 1628 exsimpl 1643 exsimpr 1644 19.29r2 1648 19.29x 1649 19.35-1 1650 19.43 1654 19.40 1657 19.40-2 1658 exanaliim 1673 19.12 1691 equs4 1751 cbvexh 1781 equvini 1784 sbimi 1790 equs5e 1821 exdistrfor 1826 equs45f 1828 sbcof2 1836 sbequi 1865 spsbe 1868 sbidm 1877 cbvexdh 1953 eumo0 2088 mor 2100 euan 2114 eupickb 2139 2eu2ex 2147 2exeu 2150 rexex 2556 reximi2 2606 cgsexg 2815 gencbvex 2827 gencbval 2829 vtocl3 2837 eqvinc 2906 eqvincg 2907 mosubt 2960 rexm 3571 prmg 3768 bm1.3ii 4184 a9evsep 4185 axnul 4188 elrelimasn 5070 dminss 5119 imainss 5120 euiotaex 5271 imadiflem 5376 funimaexglem 5380 brprcneu 5596 fv3 5626 relelfvdm 5635 ssimaex 5668 oprabid 6006 brabvv 6021 uchoice 6253 ecexr 6655 enssdom 6883 fidcenumlemim 7087 subhalfnqq 7569 prarloc 7658 ltexprlemopl 7756 ltexprlemlol 7757 ltexprlemopu 7758 ltexprlemupu 7759 fnpr2ob 13339 fngsum 13387 igsumvalx 13388 bdbm1.3ii 16164 bj-inex 16180 bj-2inf 16211 |
| Copyright terms: Public domain | W3C validator |