| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximi | GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1613 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximi 1615 eximii 1616 exsimpl 1631 exsimpr 1632 19.29r2 1636 19.29x 1637 19.35-1 1638 19.43 1642 19.40 1645 19.40-2 1646 exanaliim 1661 19.12 1679 equs4 1739 cbvexh 1769 equvini 1772 sbimi 1778 equs5e 1809 exdistrfor 1814 equs45f 1816 sbcof2 1824 sbequi 1853 spsbe 1856 sbidm 1865 cbvexdh 1941 eumo0 2076 mor 2087 euan 2101 eupickb 2126 2eu2ex 2134 2exeu 2137 rexex 2543 reximi2 2593 cgsexg 2798 gencbvex 2810 gencbval 2812 vtocl3 2820 eqvinc 2887 eqvincg 2888 mosubt 2941 rexm 3551 prmg 3744 bm1.3ii 4155 a9evsep 4156 axnul 4159 elrelimasn 5036 dminss 5085 imainss 5086 euiotaex 5236 imadiflem 5338 funimaexglem 5342 brprcneu 5554 fv3 5584 relelfvdm 5593 ssimaex 5625 oprabid 5957 brabvv 5972 uchoice 6204 ecexr 6606 enssdom 6830 fidcenumlemim 7027 subhalfnqq 7498 prarloc 7587 ltexprlemopl 7685 ltexprlemlol 7686 ltexprlemopu 7687 ltexprlemupu 7688 fnpr2ob 13042 fngsum 13090 igsumvalx 13091 bdbm1.3ii 15621 bj-inex 15637 bj-2inf 15668 |
| Copyright terms: Public domain | W3C validator |