Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximi | GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1592 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1444 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximi 1594 eximii 1595 exsimpl 1610 exsimpr 1611 19.29r2 1615 19.29x 1616 19.35-1 1617 19.43 1621 19.40 1624 19.40-2 1625 exanaliim 1640 19.12 1658 equs4 1718 cbvexh 1748 equvini 1751 sbimi 1757 equs5e 1788 exdistrfor 1793 equs45f 1795 sbcof2 1803 sbequi 1832 spsbe 1835 sbidm 1844 cbvexdh 1919 eumo0 2050 mor 2061 euan 2075 eupickb 2100 2eu2ex 2108 2exeu 2111 rexex 2516 reximi2 2566 cgsexg 2765 gencbvex 2776 gencbval 2778 vtocl3 2786 eqvinc 2853 eqvincg 2854 mosubt 2907 rexm 3514 prmg 3704 bm1.3ii 4110 a9evsep 4111 axnul 4114 dminss 5025 imainss 5026 euiotaex 5176 imadiflem 5277 funimaexglem 5281 brprcneu 5489 fv3 5519 relelfvdm 5528 ssimaex 5557 oprabid 5885 brabvv 5899 ecexr 6518 enssdom 6740 fidcenumlemim 6929 subhalfnqq 7376 prarloc 7465 ltexprlemopl 7563 ltexprlemlol 7564 ltexprlemopu 7565 ltexprlemupu 7566 bdbm1.3ii 13926 bj-inex 13942 bj-2inf 13973 |
Copyright terms: Public domain | W3C validator |