Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximi | GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1579 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1431 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximi 1581 eximii 1582 exsimpl 1597 exsimpr 1598 19.29r2 1602 19.29x 1603 19.35-1 1604 19.43 1608 19.40 1611 19.40-2 1612 exanaliim 1627 19.12 1645 equs4 1705 cbvexh 1735 equvini 1738 sbimi 1744 equs5e 1775 exdistrfor 1780 equs45f 1782 sbcof2 1790 sbequi 1819 spsbe 1822 sbidm 1831 cbvexdh 1906 eumo0 2037 mor 2048 euan 2062 eupickb 2087 2eu2ex 2095 2exeu 2098 rexex 2503 reximi2 2553 cgsexg 2747 gencbvex 2758 gencbval 2760 vtocl3 2768 eqvinc 2835 eqvincg 2836 mosubt 2889 rexm 3493 prmg 3680 bm1.3ii 4085 a9evsep 4086 axnul 4089 dminss 4999 imainss 5000 euiotaex 5150 imadiflem 5248 funimaexglem 5252 brprcneu 5460 fv3 5490 relelfvdm 5499 ssimaex 5528 oprabid 5850 brabvv 5864 ecexr 6482 enssdom 6704 fidcenumlemim 6893 subhalfnqq 7328 prarloc 7417 ltexprlemopl 7515 ltexprlemlol 7516 ltexprlemopu 7517 ltexprlemupu 7518 bdbm1.3ii 13437 bj-inex 13453 bj-2inf 13484 |
Copyright terms: Public domain | W3C validator |