Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.29r | GIF version |
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1613 | . 2 ⊢ ((∀𝑥𝜓 ∧ ∃𝑥𝜑) → ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | ancom 264 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜓 ∧ ∃𝑥𝜑)) | |
3 | exancom 1601 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.29r2 1615 19.29x 1616 exan 1686 ax9o 1691 equvini 1751 eu2 2063 intab 3860 imadiflem 5277 bj-inex 13942 |
Copyright terms: Public domain | W3C validator |