| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.29r | GIF version | ||
| Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.29 1666 | . 2 ⊢ ((∀𝑥𝜓 ∧ ∃𝑥𝜑) → ∃𝑥(𝜓 ∧ 𝜑)) | |
| 2 | ancom 266 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜓 ∧ ∃𝑥𝜑)) | |
| 3 | exancom 1654 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.29r2 1668 19.29x 1669 exan 1739 ax9o 1744 equvini 1804 eu2 2122 intab 3951 imadiflem 5399 bj-inex 16228 |
| Copyright terms: Public domain | W3C validator |