Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.29r | GIF version |
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1608 | . 2 ⊢ ((∀𝑥𝜓 ∧ ∃𝑥𝜑) → ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | ancom 264 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜓 ∧ ∃𝑥𝜑)) | |
3 | exancom 1596 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.29r2 1610 19.29x 1611 exan 1681 ax9o 1686 equvini 1746 eu2 2058 intab 3853 imadiflem 5267 bj-inex 13789 |
Copyright terms: Public domain | W3C validator |