ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.29r GIF version

Theorem 19.29r 1645
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.29r ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem 19.29r
StepHypRef Expression
1 19.29 1644 . 2 ((∀𝑥𝜓 ∧ ∃𝑥𝜑) → ∃𝑥(𝜓𝜑))
2 ancom 266 . 2 ((∃𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜓 ∧ ∃𝑥𝜑))
3 exancom 1632 . 2 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
41, 2, 33imtr4i 201 1 ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r2  1646  19.29x  1647  exan  1717  ax9o  1722  equvini  1782  eu2  2099  intab  3920  imadiflem  5362  bj-inex  15981
  Copyright terms: Public domain W3C validator