Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.9t | GIF version |
Description: A closed version of 19.9 1624. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
19.9t | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1441 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | 19.9ht 1621 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
4 | 19.8a 1570 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
5 | 3, 4 | impbid1 141 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1333 Ⅎwnf 1440 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-nf 1441 |
This theorem is referenced by: 19.9d 1641 19.23t 1657 spimt 1716 exdistrfor 1780 sbequi 1819 sbft 1828 vtoclegft 2784 copsexg 4203 |
Copyright terms: Public domain | W3C validator |