ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p0e1 GIF version

Theorem 1p0e1 9123
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p0e1 (1 + 0) = 1

Proof of Theorem 1p0e1
StepHypRef Expression
1 ax-1cn 7989 . 2 1 ∈ ℂ
21addridi 8185 1 (1 + 0) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1cn 7989  ax-0id 8004
This theorem is referenced by:  bernneq  10769  bcpasc  10875  4sqlem19  12603  ef2pi  15125  1sgm2ppw  15315
  Copyright terms: Public domain W3C validator