Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1p0e1 | GIF version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 | ⊢ (1 + 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7808 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid1i 8000 | 1 ⊢ (1 + 0) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5818 0cc0 7715 1c1 7716 + caddc 7718 |
This theorem was proved from axioms: ax-mp 5 ax-1cn 7808 ax-0id 7823 |
This theorem is referenced by: bernneq 10520 bcpasc 10622 ef2pi 13086 |
Copyright terms: Public domain | W3C validator |