ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i GIF version

Theorem addid1i 8161
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 8157 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-0id 7980
This theorem is referenced by:  1p0e1  9098  9p1e10  9450  num0u  9458  numnncl2  9470  decrmanc  9504  decaddi  9507  decaddci  9508  decmul1  9511  decmulnc  9514  fsumrelem  11614  demoivreALT  11917  sinhalfpilem  14926  efipi  14936
  Copyright terms: Public domain W3C validator