Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1i | GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 7996 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 0cc0 7715 + caddc 7718 |
This theorem was proved from axioms: ax-mp 5 ax-0id 7823 |
This theorem is referenced by: 1p0e1 8932 9p1e10 9280 num0u 9288 numnncl2 9300 decrmanc 9334 decaddi 9337 decaddci 9338 decmul1 9341 decmulnc 9344 fsumrelem 11350 demoivreALT 11652 sinhalfpilem 13072 efipi 13082 |
Copyright terms: Public domain | W3C validator |