ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i GIF version

Theorem addid1i 8099
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 8095 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  (class class class)co 5875  cc 7809  0cc0 7811   + caddc 7814
This theorem was proved from axioms:  ax-mp 5  ax-0id 7919
This theorem is referenced by:  1p0e1  9035  9p1e10  9386  num0u  9394  numnncl2  9406  decrmanc  9440  decaddi  9443  decaddci  9444  decmul1  9447  decmulnc  9450  fsumrelem  11479  demoivreALT  11781  sinhalfpilem  14215  efipi  14225
  Copyright terms: Public domain W3C validator