![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid1i | GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 8094 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 (class class class)co 5874 ℂcc 7808 0cc0 7810 + caddc 7813 |
This theorem was proved from axioms: ax-mp 5 ax-0id 7918 |
This theorem is referenced by: 1p0e1 9034 9p1e10 9385 num0u 9393 numnncl2 9405 decrmanc 9439 decaddi 9442 decaddci 9443 decmul1 9446 decmulnc 9449 fsumrelem 11478 demoivreALT 11780 sinhalfpilem 14182 efipi 14192 |
Copyright terms: Public domain | W3C validator |