ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i GIF version

Theorem addid1i 8000
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 7996 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  (class class class)co 5818  cc 7713  0cc0 7715   + caddc 7718
This theorem was proved from axioms:  ax-mp 5  ax-0id 7823
This theorem is referenced by:  1p0e1  8932  9p1e10  9280  num0u  9288  numnncl2  9300  decrmanc  9334  decaddi  9337  decaddci  9338  decmul1  9341  decmulnc  9344  fsumrelem  11350  demoivreALT  11652  sinhalfpilem  13072  efipi  13082
  Copyright terms: Public domain W3C validator