ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i GIF version

Theorem addid1i 8101
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 8097 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  (class class class)co 5877  cc 7811  0cc0 7813   + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-0id 7921
This theorem is referenced by:  1p0e1  9037  9p1e10  9388  num0u  9396  numnncl2  9408  decrmanc  9442  decaddi  9445  decaddci  9446  decmul1  9449  decmulnc  9452  fsumrelem  11481  demoivreALT  11783  sinhalfpilem  14297  efipi  14307
  Copyright terms: Public domain W3C validator