Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1i | GIF version |
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid1i | ⊢ (𝐴 + 0) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid1 8057 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-0id 7882 |
This theorem is referenced by: 1p0e1 8994 9p1e10 9345 num0u 9353 numnncl2 9365 decrmanc 9399 decaddi 9402 decaddci 9403 decmul1 9406 decmulnc 9409 fsumrelem 11434 demoivreALT 11736 sinhalfpilem 13506 efipi 13516 |
Copyright terms: Public domain | W3C validator |