ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 GIF version

Theorem fv0p1e1 8993
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5860 . . 3 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2 0p1e1 8992 . . 3 (0 + 1) = 1
31, 2eqtrdi 2219 . 2 (𝑁 = 0 → (𝑁 + 1) = 1)
43fveq2d 5500 1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cfv 5198  (class class class)co 5853  0cc0 7774  1c1 7775   + caddc 7777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-addcom 7874  ax-i2m1 7879  ax-0id 7882
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  mertenslem2  11499  fprodfac  11578
  Copyright terms: Public domain W3C validator