![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fv0p1e1 | GIF version |
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
fv0p1e1 | ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 | . . 3 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
2 | 0p1e1 9096 | . . 3 ⊢ (0 + 1) = 1 | |
3 | 1, 2 | eqtrdi 2242 | . 2 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
4 | 3 | fveq2d 5558 | 1 ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5254 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-addcom 7972 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: mertenslem2 11679 fprodfac 11758 |
Copyright terms: Public domain | W3C validator |