Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fv0p1e1 | GIF version |
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
fv0p1e1 | ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . 3 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
2 | 0p1e1 8971 | . . 3 ⊢ (0 + 1) = 1 | |
3 | 1, 2 | eqtrdi 2215 | . 2 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
4 | 3 | fveq2d 5490 | 1 ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ‘cfv 5188 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: mertenslem2 11477 fprodfac 11556 |
Copyright terms: Public domain | W3C validator |