ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 GIF version

Theorem fv0p1e1 8972
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5849 . . 3 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2 0p1e1 8971 . . 3 (0 + 1) = 1
31, 2eqtrdi 2215 . 2 (𝑁 = 0 → (𝑁 + 1) = 1)
43fveq2d 5490 1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851  ax-addcom 7853  ax-i2m1 7858  ax-0id 7861
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  mertenslem2  11477  fprodfac  11556
  Copyright terms: Public domain W3C validator