ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 GIF version

Theorem fv0p1e1 9186
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5974 . . 3 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2 0p1e1 9185 . . 3 (0 + 1) = 1
31, 2eqtrdi 2256 . 2 (𝑁 = 0 → (𝑁 + 1) = 1)
43fveq2d 5603 1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cfv 5290  (class class class)co 5967  0cc0 7960  1c1 7961   + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-addcom 8060  ax-i2m1 8065  ax-0id 8068
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  mertenslem2  11962  fprodfac  12041
  Copyright terms: Public domain W3C validator