| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fv0p1e1 | GIF version | ||
| Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| fv0p1e1 | ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6008 | . . 3 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 2 | 0p1e1 9224 | . . 3 ⊢ (0 + 1) = 1 | |
| 3 | 1, 2 | eqtrdi 2278 | . 2 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
| 4 | 3 | fveq2d 5631 | 1 ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ‘cfv 5318 (class class class)co 6001 0cc0 7999 1c1 8000 + caddc 8002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-addcom 8099 ax-i2m1 8104 ax-0id 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: mertenslem2 12047 fprodfac 12126 |
| Copyright terms: Public domain | W3C validator |