| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fv0p1e1 | GIF version | ||
| Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| fv0p1e1 | ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . 3 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 2 | 0p1e1 9104 | . . 3 ⊢ (0 + 1) = 1 | |
| 3 | 1, 2 | eqtrdi 2245 | . 2 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
| 4 | 3 | fveq2d 5562 | 1 ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5258 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-addcom 7979 ax-i2m1 7984 ax-0id 7987 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: mertenslem2 11701 fprodfac 11780 |
| Copyright terms: Public domain | W3C validator |