ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq GIF version

Theorem bernneq 10786
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Proof of Theorem bernneq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5942 . . . . . . . 8 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
21oveq2d 5950 . . . . . . 7 (𝑗 = 0 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 0)))
3 oveq2 5942 . . . . . . 7 (𝑗 = 0 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑0))
42, 3breq12d 4056 . . . . . 6 (𝑗 = 0 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0)))
54imbi2d 230 . . . . 5 (𝑗 = 0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))))
6 oveq2 5942 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
76oveq2d 5950 . . . . . . 7 (𝑗 = 𝑘 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑘)))
8 oveq2 5942 . . . . . . 7 (𝑗 = 𝑘 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑘))
97, 8breq12d 4056 . . . . . 6 (𝑗 = 𝑘 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)))
109imbi2d 230 . . . . 5 (𝑗 = 𝑘 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))))
11 oveq2 5942 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1211oveq2d 5950 . . . . . . 7 (𝑗 = (𝑘 + 1) → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · (𝑘 + 1))))
13 oveq2 5942 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑(𝑘 + 1)))
1412, 13breq12d 4056 . . . . . 6 (𝑗 = (𝑘 + 1) → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))
1514imbi2d 230 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
16 oveq2 5942 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
1716oveq2d 5950 . . . . . . 7 (𝑗 = 𝑁 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑁)))
18 oveq2 5942 . . . . . . 7 (𝑗 = 𝑁 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑁))
1917, 18breq12d 4056 . . . . . 6 (𝑗 = 𝑁 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
2019imbi2d 230 . . . . 5 (𝑗 = 𝑁 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
21 recn 8040 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22 mul01 8443 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2322oveq2d 5950 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
24 1p0e1 9134 . . . . . . . . 9 (1 + 0) = 1
2523, 24eqtrdi 2253 . . . . . . . 8 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
26 1le1 8627 . . . . . . . . 9 1 ≤ 1
27 ax-1cn 8000 . . . . . . . . . . 11 1 ∈ ℂ
28 addcl 8032 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
2927, 28mpan 424 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
30 exp0 10669 . . . . . . . . . 10 ((1 + 𝐴) ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3129, 30syl 14 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3226, 31breqtrrid 4081 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ≤ ((1 + 𝐴)↑0))
3325, 32eqbrtrd 4065 . . . . . . 7 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3421, 33syl 14 . . . . . 6 (𝐴 ∈ ℝ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3534adantr 276 . . . . 5 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
36 1re 8053 . . . . . . . . . . . . . 14 1 ∈ ℝ
37 nn0re 9286 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
38 remulcl 8035 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 · 𝑘) ∈ ℝ)
3937, 38sylan2 286 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℝ)
40 readdcl 8033 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐴 · 𝑘) ∈ ℝ) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
4136, 39, 40sylancr 414 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
42 simpl 109 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
43 readdcl 8033 . . . . . . . . . . . . 13 (((1 + (𝐴 · 𝑘)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4441, 42, 43syl2anc 411 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4544adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
46 readdcl 8033 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
4736, 46mpan 424 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
4847adantr 276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + 𝐴) ∈ ℝ)
4941, 48remulcld 8085 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
5049adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
51 reexpcl 10682 . . . . . . . . . . . . . 14 (((1 + 𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5247, 51sylan 283 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5352, 48remulcld 8085 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
5453adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
55 remulcl 8035 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
5655anidms 397 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
57 msqge0 8671 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
5856, 57jca 306 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)))
59 nn0ge0 9302 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
6037, 59jca 306 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
61 mulge0 8674 . . . . . . . . . . . . . . . 16 ((((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)) ∧ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6258, 60, 61syl2an 289 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6321adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
64 nn0cn 9287 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6564adantl 277 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6663, 63, 65mul32d 8207 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐴) · 𝑘) = ((𝐴 · 𝑘) · 𝐴))
6762, 66breqtrd 4069 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝑘) · 𝐴))
68 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝐴 ∈ ℝ)
6938, 68remulcld 8085 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7037, 69sylan2 286 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7144, 70addge01d 8588 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (0 ≤ ((𝐴 · 𝑘) · 𝐴) ↔ ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴))))
7267, 71mpbid 147 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)))
73 mulcl 8034 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
74 addcl 8032 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
7527, 73, 74sylancr 414 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
76 simpl 109 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝐴 ∈ ℂ)
7773, 76mulcld 8075 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℂ)
7875, 76, 77addassd 8077 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
79 muladd11 8187 . . . . . . . . . . . . . . . 16 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8073, 76, 79syl2anc 411 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8178, 80eqtr4d 2240 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8221, 64, 81syl2an 289 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8372, 82breqtrd 4069 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8483adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8541adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
8652adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
8748adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + 𝐴) ∈ ℝ)
88 neg1rr 9124 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
89 leadd2 8486 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
9088, 36, 89mp3an13 1340 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
91 1pneg1e0 9129 . . . . . . . . . . . . . . . 16 (1 + -1) = 0
9291breq1i 4050 . . . . . . . . . . . . . . 15 ((1 + -1) ≤ (1 + 𝐴) ↔ 0 ≤ (1 + 𝐴))
9390, 92bitrdi 196 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ 0 ≤ (1 + 𝐴)))
9493biimpa 296 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → 0 ≤ (1 + 𝐴))
9594ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → 0 ≤ (1 + 𝐴))
96 simprr 531 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))
9785, 86, 87, 95, 96lemul1ad 8994 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
9845, 50, 54, 84, 97letrd 8178 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
99 adddi 8039 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
10027, 99mp3an3 1338 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
101 mulrid 8051 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
102101adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
103102oveq2d 5950 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
104100, 103eqtrd 2237 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
105104oveq2d 5950 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = (1 + ((𝐴 · 𝑘) + 𝐴)))
106 addass 8037 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10727, 106mp3an1 1336 . . . . . . . . . . . . . 14 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10873, 76, 107syl2anc 411 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
109105, 108eqtr4d 2240 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11021, 64, 109syl2an 289 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
111110adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11227, 21, 28sylancr 414 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
113 expp1 10672 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
114112, 113sylan 283 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
115114adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
11698, 111, 1153brtr4d 4075 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))
117116exp43 372 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑘 ∈ ℕ0 → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
118117com12 30 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
119118impd 254 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
120119a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)) → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
1215, 10, 15, 20, 35, 120nn0ind 9469 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
122121expd 258 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
123122com12 30 . 2 (𝐴 ∈ ℝ → (𝑁 ∈ ℕ0 → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
1241233imp 1195 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912  cle 8090  -cneg 8226  0cn0 9277  cexp 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-exp 10665
This theorem is referenced by:  bernneq2  10787
  Copyright terms: Public domain W3C validator