ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 9039
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 8981 . 2 2 = (1 + 1)
21eqcomi 2181 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5878  1c1 7815   + caddc 7817  2c2 8973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-2 8981
This theorem is referenced by:  2m1e1  9040  add1p1  9171  sub1m1  9172  nn0n0n1ge2  9326  3halfnz  9353  10p10e20  9481  5t4e20  9488  6t4e24  9492  7t3e21  9496  8t3e24  9502  9t3e27  9509  fz0to3un2pr  10126  fldiv4p1lem1div2  10308  m1modge3gt1  10374  fac2  10714  hash2  10795  nn0o1gt2  11913  3lcm2e6woprm  12089  logbleb  14567  logblt  14568  ex-exp  14667
  Copyright terms: Public domain W3C validator