![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 9041 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2197 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 1c1 7873 + caddc 7875 2c2 9033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-2 9041 |
This theorem is referenced by: 2m1e1 9100 add1p1 9232 sub1m1 9233 nn0n0n1ge2 9387 3halfnz 9414 10p10e20 9542 5t4e20 9549 6t4e24 9553 7t3e21 9557 8t3e24 9563 9t3e27 9570 fz0to3un2pr 10189 fldiv4p1lem1div2 10374 m1modge3gt1 10442 fac2 10802 hash2 10883 nn0o1gt2 12046 3lcm2e6woprm 12224 logbleb 15093 logblt 15094 ex-exp 15219 |
Copyright terms: Public domain | W3C validator |