| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9130 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2211 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 1c1 7961 + caddc 7963 2c2 9122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-2 9130 |
| This theorem is referenced by: 2m1e1 9189 add1p1 9322 sub1m1 9323 nn0n0n1ge2 9478 3halfnz 9505 10p10e20 9633 5t4e20 9640 6t4e24 9644 7t3e21 9648 8t3e24 9654 9t3e27 9661 fz0to3un2pr 10280 fldiv4p1lem1div2 10485 m1modge3gt1 10553 fac2 10913 hash2 10994 nn0o1gt2 12331 3lcm2e6woprm 12523 2exp8 12873 2exp11 12874 2exp16 12875 logbleb 15548 logblt 15549 1sgm2ppw 15582 ex-exp 15863 |
| Copyright terms: Public domain | W3C validator |