ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 9126
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 9068 . 2 2 = (1 + 1)
21eqcomi 2200 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  1c1 7899   + caddc 7901  2c2 9060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-2 9068
This theorem is referenced by:  2m1e1  9127  add1p1  9260  sub1m1  9261  nn0n0n1ge2  9415  3halfnz  9442  10p10e20  9570  5t4e20  9577  6t4e24  9581  7t3e21  9585  8t3e24  9591  9t3e27  9598  fz0to3un2pr  10217  fldiv4p1lem1div2  10414  m1modge3gt1  10482  fac2  10842  hash2  10923  nn0o1gt2  12089  3lcm2e6woprm  12281  2exp8  12631  2exp11  12632  2exp16  12633  logbleb  15305  logblt  15306  1sgm2ppw  15339  ex-exp  15481
  Copyright terms: Public domain W3C validator