| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9095 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2209 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 1c1 7926 + caddc 7928 2c2 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-2 9095 |
| This theorem is referenced by: 2m1e1 9154 add1p1 9287 sub1m1 9288 nn0n0n1ge2 9443 3halfnz 9470 10p10e20 9598 5t4e20 9605 6t4e24 9609 7t3e21 9613 8t3e24 9619 9t3e27 9626 fz0to3un2pr 10245 fldiv4p1lem1div2 10448 m1modge3gt1 10516 fac2 10876 hash2 10957 nn0o1gt2 12216 3lcm2e6woprm 12408 2exp8 12758 2exp11 12759 2exp16 12760 logbleb 15433 logblt 15434 1sgm2ppw 15467 ex-exp 15663 |
| Copyright terms: Public domain | W3C validator |