ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 8982
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 8924 . 2 2 = (1 + 1)
21eqcomi 2174 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1348  (class class class)co 5850  1c1 7762   + caddc 7764  2c2 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-2 8924
This theorem is referenced by:  2m1e1  8983  add1p1  9114  sub1m1  9115  nn0n0n1ge2  9269  3halfnz  9296  10p10e20  9424  5t4e20  9431  6t4e24  9435  7t3e21  9439  8t3e24  9445  9t3e27  9452  fz0to3un2pr  10066  fldiv4p1lem1div2  10248  m1modge3gt1  10314  fac2  10652  hash2  10734  nn0o1gt2  11851  3lcm2e6woprm  12027  logbleb  13632  logblt  13633  ex-exp  13721
  Copyright terms: Public domain W3C validator