| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9068 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7899 + caddc 7901 2c2 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-2 9068 |
| This theorem is referenced by: 2m1e1 9127 add1p1 9260 sub1m1 9261 nn0n0n1ge2 9415 3halfnz 9442 10p10e20 9570 5t4e20 9577 6t4e24 9581 7t3e21 9585 8t3e24 9591 9t3e27 9598 fz0to3un2pr 10217 fldiv4p1lem1div2 10414 m1modge3gt1 10482 fac2 10842 hash2 10923 nn0o1gt2 12089 3lcm2e6woprm 12281 2exp8 12631 2exp11 12632 2exp16 12633 logbleb 15305 logblt 15306 1sgm2ppw 15339 ex-exp 15481 |
| Copyright terms: Public domain | W3C validator |