![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 9043 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2197 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 + caddc 7877 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-2 9043 |
This theorem is referenced by: 2m1e1 9102 add1p1 9235 sub1m1 9236 nn0n0n1ge2 9390 3halfnz 9417 10p10e20 9545 5t4e20 9552 6t4e24 9556 7t3e21 9560 8t3e24 9566 9t3e27 9573 fz0to3un2pr 10192 fldiv4p1lem1div2 10377 m1modge3gt1 10445 fac2 10805 hash2 10886 nn0o1gt2 12049 3lcm2e6woprm 12227 logbleb 15134 logblt 15135 ex-exp 15289 |
Copyright terms: Public domain | W3C validator |