![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8981 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2181 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5878 1c1 7815 + caddc 7817 2c2 8973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-2 8981 |
This theorem is referenced by: 2m1e1 9040 add1p1 9171 sub1m1 9172 nn0n0n1ge2 9326 3halfnz 9353 10p10e20 9481 5t4e20 9488 6t4e24 9492 7t3e21 9496 8t3e24 9502 9t3e27 9509 fz0to3un2pr 10126 fldiv4p1lem1div2 10308 m1modge3gt1 10374 fac2 10714 hash2 10795 nn0o1gt2 11913 3lcm2e6woprm 12089 logbleb 14567 logblt 14568 ex-exp 14667 |
Copyright terms: Public domain | W3C validator |