| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9066 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7897 + caddc 7899 2c2 9058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-2 9066 |
| This theorem is referenced by: 2m1e1 9125 add1p1 9258 sub1m1 9259 nn0n0n1ge2 9413 3halfnz 9440 10p10e20 9568 5t4e20 9575 6t4e24 9579 7t3e21 9583 8t3e24 9589 9t3e27 9596 fz0to3un2pr 10215 fldiv4p1lem1div2 10412 m1modge3gt1 10480 fac2 10840 hash2 10921 nn0o1gt2 12087 3lcm2e6woprm 12279 2exp8 12629 2exp11 12630 2exp16 12631 logbleb 15281 logblt 15282 1sgm2ppw 15315 ex-exp 15457 |
| Copyright terms: Public domain | W3C validator |