Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8912 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2169 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 1c1 7750 + caddc 7752 2c2 8904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-2 8912 |
This theorem is referenced by: 2m1e1 8971 add1p1 9102 sub1m1 9103 nn0n0n1ge2 9257 3halfnz 9284 10p10e20 9412 5t4e20 9419 6t4e24 9423 7t3e21 9427 8t3e24 9433 9t3e27 9440 fz0to3un2pr 10054 fldiv4p1lem1div2 10236 m1modge3gt1 10302 fac2 10640 hash2 10721 nn0o1gt2 11838 3lcm2e6woprm 12014 logbleb 13479 logblt 13480 ex-exp 13568 |
Copyright terms: Public domain | W3C validator |