| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9049 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 1c1 7880 + caddc 7882 2c2 9041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-2 9049 |
| This theorem is referenced by: 2m1e1 9108 add1p1 9241 sub1m1 9242 nn0n0n1ge2 9396 3halfnz 9423 10p10e20 9551 5t4e20 9558 6t4e24 9562 7t3e21 9566 8t3e24 9572 9t3e27 9579 fz0to3un2pr 10198 fldiv4p1lem1div2 10395 m1modge3gt1 10463 fac2 10823 hash2 10904 nn0o1gt2 12070 3lcm2e6woprm 12254 2exp8 12604 2exp11 12605 2exp16 12606 logbleb 15197 logblt 15198 1sgm2ppw 15231 ex-exp 15373 |
| Copyright terms: Public domain | W3C validator |