ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 9036
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 8978 . 2 2 = (1 + 1)
21eqcomi 2181 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5875  1c1 7812   + caddc 7814  2c2 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-2 8978
This theorem is referenced by:  2m1e1  9037  add1p1  9168  sub1m1  9169  nn0n0n1ge2  9323  3halfnz  9350  10p10e20  9478  5t4e20  9485  6t4e24  9489  7t3e21  9493  8t3e24  9499  9t3e27  9506  fz0to3un2pr  10123  fldiv4p1lem1div2  10305  m1modge3gt1  10371  fac2  10711  hash2  10792  nn0o1gt2  11910  3lcm2e6woprm  12086  logbleb  14382  logblt  14383  ex-exp  14482
  Copyright terms: Public domain W3C validator