ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 9124
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 9066 . 2 2 = (1 + 1)
21eqcomi 2200 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  1c1 7897   + caddc 7899  2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-2 9066
This theorem is referenced by:  2m1e1  9125  add1p1  9258  sub1m1  9259  nn0n0n1ge2  9413  3halfnz  9440  10p10e20  9568  5t4e20  9575  6t4e24  9579  7t3e21  9583  8t3e24  9589  9t3e27  9596  fz0to3un2pr  10215  fldiv4p1lem1div2  10412  m1modge3gt1  10480  fac2  10840  hash2  10921  nn0o1gt2  12087  3lcm2e6woprm  12279  2exp8  12629  2exp11  12630  2exp16  12631  logbleb  15281  logblt  15282  1sgm2ppw  15315  ex-exp  15457
  Copyright terms: Public domain W3C validator