![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8542 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2093 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 (class class class)co 5666 1c1 7412 + caddc 7414 2c2 8534 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 df-2 8542 |
This theorem is referenced by: 2m1e1 8601 add1p1 8726 sub1m1 8727 nn0n0n1ge2 8878 3halfnz 8904 10p10e20 9032 5t4e20 9039 6t4e24 9043 7t3e21 9047 8t3e24 9053 9t3e27 9060 fldiv4p1lem1div2 9773 m1modge3gt1 9839 fac2 10200 hash2 10281 nn0o1gt2 11244 3lcm2e6woprm 11407 ex-exp 11927 |
Copyright terms: Public domain | W3C validator |