ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 9099
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 9041 . 2 2 = (1 + 1)
21eqcomi 2197 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5918  1c1 7873   + caddc 7875  2c2 9033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-2 9041
This theorem is referenced by:  2m1e1  9100  add1p1  9232  sub1m1  9233  nn0n0n1ge2  9387  3halfnz  9414  10p10e20  9542  5t4e20  9549  6t4e24  9553  7t3e21  9557  8t3e24  9563  9t3e27  9570  fz0to3un2pr  10189  fldiv4p1lem1div2  10374  m1modge3gt1  10442  fac2  10802  hash2  10883  nn0o1gt2  12046  3lcm2e6woprm  12224  logbleb  15093  logblt  15094  ex-exp  15219
  Copyright terms: Public domain W3C validator