| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9169 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2233 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6001 1c1 8000 + caddc 8002 2c2 9161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-2 9169 |
| This theorem is referenced by: 2m1e1 9228 add1p1 9361 sub1m1 9362 nn0n0n1ge2 9517 3halfnz 9544 10p10e20 9672 5t4e20 9679 6t4e24 9683 7t3e21 9687 8t3e24 9693 9t3e27 9700 fz0to3un2pr 10319 fldiv4p1lem1div2 10525 m1modge3gt1 10593 fac2 10953 hash2 11034 s2leng 11321 nn0o1gt2 12416 3lcm2e6woprm 12608 2exp8 12958 2exp11 12959 2exp16 12960 logbleb 15635 logblt 15636 1sgm2ppw 15669 ex-exp 16091 |
| Copyright terms: Public domain | W3C validator |