| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version | ||
| Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| Ref | Expression |
|---|---|
| 1p1e2 | ⊢ (1 + 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9094 | . 2 ⊢ 2 = (1 + 1) | |
| 2 | 1 | eqcomi 2208 | 1 ⊢ (1 + 1) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 1c1 7925 + caddc 7927 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-2 9094 |
| This theorem is referenced by: 2m1e1 9153 add1p1 9286 sub1m1 9287 nn0n0n1ge2 9442 3halfnz 9469 10p10e20 9597 5t4e20 9604 6t4e24 9608 7t3e21 9612 8t3e24 9618 9t3e27 9625 fz0to3un2pr 10244 fldiv4p1lem1div2 10446 m1modge3gt1 10514 fac2 10874 hash2 10955 nn0o1gt2 12187 3lcm2e6woprm 12379 2exp8 12729 2exp11 12730 2exp16 12731 logbleb 15404 logblt 15405 1sgm2ppw 15438 ex-exp 15625 |
| Copyright terms: Public domain | W3C validator |