ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 GIF version

Theorem 1p1e2 8600
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2 (1 + 1) = 2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 8542 . 2 2 = (1 + 1)
21eqcomi 2093 1 (1 + 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1290  (class class class)co 5666  1c1 7412   + caddc 7414  2c2 8534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-cleq 2082  df-2 8542
This theorem is referenced by:  2m1e1  8601  add1p1  8726  sub1m1  8727  nn0n0n1ge2  8878  3halfnz  8904  10p10e20  9032  5t4e20  9039  6t4e24  9043  7t3e21  9047  8t3e24  9053  9t3e27  9060  fldiv4p1lem1div2  9773  m1modge3gt1  9839  fac2  10200  hash2  10281  nn0o1gt2  11244  3lcm2e6woprm  11407  ex-exp  11927
  Copyright terms: Public domain W3C validator