ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p0e1 Unicode version

Theorem 1p0e1 9154
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p0e1  |-  ( 1  +  0 )  =  1

Proof of Theorem 1p0e1
StepHypRef Expression
1 ax-1cn 8020 . 2  |-  1  e.  CC
21addridi 8216 1  |-  ( 1  +  0 )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5946   0cc0 7927   1c1 7928    + caddc 7930
This theorem was proved from axioms:  ax-mp 5  ax-1cn 8020  ax-0id 8035
This theorem is referenced by:  bernneq  10807  bcpasc  10913  4sqlem19  12765  ef2pi  15310  1sgm2ppw  15500
  Copyright terms: Public domain W3C validator