ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p0e1 Unicode version

Theorem 1p0e1 9125
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p0e1  |-  ( 1  +  0 )  =  1

Proof of Theorem 1p0e1
StepHypRef Expression
1 ax-1cn 7991 . 2  |-  1  e.  CC
21addridi 8187 1  |-  ( 1  +  0 )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5925   0cc0 7898   1c1 7899    + caddc 7901
This theorem was proved from axioms:  ax-mp 5  ax-1cn 7991  ax-0id 8006
This theorem is referenced by:  bernneq  10771  bcpasc  10877  4sqlem19  12605  ef2pi  15149  1sgm2ppw  15339
  Copyright terms: Public domain W3C validator