ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcpasc GIF version

Theorem bcpasc 10764
Description: Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 9234 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 elfzp12 10117 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
3 nn0uz 9580 . . . . . . 7 0 = (ℤ‘0)
42, 3eleq2s 2284 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
51, 4syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
6 1p0e1 9053 . . . . . . . 8 (1 + 0) = 1
7 bcn0 10753 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
8 0z 9282 . . . . . . . . . . 11 0 ∈ ℤ
9 1z 9297 . . . . . . . . . . 11 1 ∈ ℤ
10 zsubcl 9312 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
118, 9, 10mp2an 426 . . . . . . . . . 10 (0 − 1) ∈ ℤ
12 0re 7975 . . . . . . . . . . . 12 0 ∈ ℝ
13 ltm1 8821 . . . . . . . . . . . 12 (0 ∈ ℝ → (0 − 1) < 0)
1412, 13ax-mp 5 . . . . . . . . . . 11 (0 − 1) < 0
1514orci 732 . . . . . . . . . 10 ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))
16 bcval4 10750 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
1711, 15, 16mp3an23 1340 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C(0 − 1)) = 0)
187, 17oveq12d 5909 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = (1 + 0))
19 bcn0 10753 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
201, 19syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
216, 18, 203eqtr4a 2248 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))
22 oveq2 5899 . . . . . . . . 9 (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0))
23 oveq1 5898 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 − 1) = (0 − 1))
2423oveq2d 5907 . . . . . . . . 9 (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1)))
2522, 24oveq12d 5909 . . . . . . . 8 (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1))))
26 oveq2 5899 . . . . . . . 8 (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0))
2725, 26eqeq12d 2204 . . . . . . 7 (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)))
2821, 27syl5ibrcom 157 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
29 simpr 110 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))
30 0p1e1 9051 . . . . . . . . . 10 (0 + 1) = 1
3130oveq1i 5901 . . . . . . . . 9 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
3229, 31eleqtrdi 2282 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1)))
33 nn0p1nn 9233 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
34 nnuz 9581 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2282 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
36 fzm1 10118 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (ℤ‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))))
3736biimpa 296 . . . . . . . . . 10 (((𝑁 + 1) ∈ (ℤ‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
3835, 37sylan 283 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
39 nn0cn 9204 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 ax-1cn 7922 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 pncan 8181 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4239, 40, 41sylancl 413 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4342oveq2d 5907 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4443eleq2d 2259 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ↔ 𝐾 ∈ (1...𝑁)))
4544biimpa 296 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁))
46 1eluzge0 9592 . . . . . . . . . . . . . . 15 1 ∈ (ℤ‘0)
47 fzss1 10081 . . . . . . . . . . . . . . 15 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
4846, 47ax-mp 5 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3166 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
50 bcp1n 10759 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
5149, 50syl 14 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
52 bcrpcl 10751 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5349, 52syl 14 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5453rpcnd 9716 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ)
55 elfzuz2 10047 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5655, 34eleqtrrdi 2283 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
5756peano2nnd 8952 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ)
5857nncnd 8951 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ)
5956nncnd 8951 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
60 1cnd 7991 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
61 elfzelz 10043 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ)
6261zcnd 9394 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
6359, 60, 62addsubd 8307 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
64 fznn0sub 10075 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
65 nn0p1nn 9233 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
6664, 65syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
6763, 66eqeltrd 2266 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
6867nncnd 8951 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
6967nnap0d 8983 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) # 0)
7054, 58, 68, 69div12apd 8802 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))))
7167nnrpd 9712 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ+)
7253, 71rpdivcld 9732 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℝ+)
7372rpcnd 9716 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
7458, 73mulcomd 7997 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7570, 74eqtrd 2222 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7658, 62npcand 8290 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1))
7776oveq2d 5907 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7873, 68, 62adddid 8000 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7975, 77, 783eqtr2d 2228 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
8054, 68, 69divcanap1d 8766 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾))
81 elfznn 10072 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
8281nnap0d 8983 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → 𝐾 # 0)
8354, 68, 62, 69, 82divdivap2d 8798 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)))
84 bcm1k 10758 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8559, 62, 60subsub3d 8316 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾))
8685oveq1d 5906 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾))
8786oveq2d 5907 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
8884, 87eqtrd 2222 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
89 fzelp1 10092 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1)))
9057nnzd 9392 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ)
91 elfzm1b 10116 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9261, 90, 91syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9389, 92mpbid 147 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))
9459, 40, 41sylancl 413 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁)
9594oveq2d 5907 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
9693, 95eleqtrd 2268 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
97 bcrpcl 10751 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9896, 97syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9998rpcnd 9716 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℂ)
10081nnrpd 9712 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℝ+)
10171, 100rpdivcld 9732 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℝ+)
102101rpcnd 9716 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ)
10368, 62, 69, 82divap0d 8781 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) # 0)
10454, 99, 102, 103divmulap3d 8800 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))))
10588, 104mpbird 167 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)))
10654, 62, 68, 69div23apd 8803 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))
10783, 105, 1063eqtr3rd 2231 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1)))
10880, 107oveq12d 5909 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1))))
10951, 79, 1083eqtrrd 2227 . . . . . . . . . . 11 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
11045, 109syl 14 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
111 oveq2 5899 . . . . . . . . . . . . 13 (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1)))
11233nnzd 9392 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
113 nn0re 9203 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
114113ltp1d 8905 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
115114olcd 735 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
116 bcval4 10750 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
117112, 115, 116mpd3an23 1350 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁C(𝑁 + 1)) = 0)
118111, 117sylan9eqr 2244 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0)
119 oveq1 5898 . . . . . . . . . . . . . . 15 (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1))
120119, 42sylan9eqr 2244 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁)
121120oveq2d 5907 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁))
122 bcnn 10755 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
123122adantr 276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1)
124121, 123eqtrd 2222 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1)
125118, 124oveq12d 5909 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1))
126 oveq2 5899 . . . . . . . . . . . 12 (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1)))
127 bcnn 10755 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
1281, 127syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
129126, 128sylan9eqr 2244 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1)
13030, 125, 1293eqtr4a 2248 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
131110, 130jaodan 798 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13238, 131syldan 282 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13332, 132syldan 282 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
134133ex 115 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
13528, 134jaod 718 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
1365, 135sylbid 150 . . . 4 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
137136imp 124 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
138137adantlr 477 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
139 00id 8116 . . 3 (0 + 0) = 0
140 fzelp1 10092 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
141140con3i 633 . . . . 5 𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁))
142 bcval3 10749 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1431423expa 1205 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
144141, 143sylan2 286 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C𝐾) = 0)
145 simpll 527 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
146 simplr 528 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝐾 ∈ ℤ)
147 peano2zm 9309 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
148146, 147syl 14 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝐾 − 1) ∈ ℤ)
14939adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
150149, 40, 41sylancl 413 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 + 1) − 1) = 𝑁)
151150oveq2d 5907 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
152151eleq2d 2259 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) ↔ (𝐾 − 1) ∈ (0...𝑁)))
153 id 19 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
1541nn0zd 9391 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
155153, 154, 91syl2anr 290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
156 fzp1ss 10091 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
1578, 156ax-mp 5 . . . . . . . . . 10 ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
15831, 157eqsstrri 3203 . . . . . . . . 9 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
159158sseli 3166 . . . . . . . 8 (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1)))
160155, 159syl6bir 164 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) → 𝐾 ∈ (0...(𝑁 + 1))))
161152, 160sylbird 170 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))))
162161con3dimp 636 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ (𝐾 − 1) ∈ (0...𝑁))
163 bcval3 10749 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℤ ∧ ¬ (𝐾 − 1) ∈ (0...𝑁)) → (𝑁C(𝐾 − 1)) = 0)
164145, 148, 162, 163syl3anc 1249 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C(𝐾 − 1)) = 0)
165144, 164oveq12d 5909 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0))
166145, 1syl 14 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
167 simpr 110 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ 𝐾 ∈ (0...(𝑁 + 1)))
168 bcval3 10749 . . . 4 (((𝑁 + 1) ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
169166, 146, 167, 168syl3anc 1249 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
170139, 165, 1693eqtr4a 2248 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
171 simpr 110 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
172 0zd 9283 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
173112adantr 276 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
174 fzdcel 10058 . . . 4 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → DECID 𝐾 ∈ (0...(𝑁 + 1)))
175 exmiddc 837 . . . 4 (DECID 𝐾 ∈ (0...(𝑁 + 1)) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
176174, 175syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
177171, 172, 173, 176syl3anc 1249 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
178138, 170, 177mpjaodan 799 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  wss 3144   class class class wbr 4018  cfv 5231  (class class class)co 5891  cc 7827  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   · cmul 7834   < clt 8010  cmin 8146   / cdiv 8647  cn 8937  0cn0 9194  cz 9271  cuz 9546  +crp 9671  ...cfz 10026  Ccbc 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-seqfrec 10464  df-fac 10724  df-bc 10746
This theorem is referenced by:  bccl  10765  bcn2m1  10767  bcn2p1  10768  binomlem  11509  bcxmas  11515  ex-bc  14878
  Copyright terms: Public domain W3C validator