ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcpasc GIF version

Theorem bcpasc 10730
Description: Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 9205 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 elfzp12 10085 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
3 nn0uz 9551 . . . . . . 7 0 = (ℤ‘0)
42, 3eleq2s 2272 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
51, 4syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
6 1p0e1 9024 . . . . . . . 8 (1 + 0) = 1
7 bcn0 10719 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
8 0z 9253 . . . . . . . . . . 11 0 ∈ ℤ
9 1z 9268 . . . . . . . . . . 11 1 ∈ ℤ
10 zsubcl 9283 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
118, 9, 10mp2an 426 . . . . . . . . . 10 (0 − 1) ∈ ℤ
12 0re 7948 . . . . . . . . . . . 12 0 ∈ ℝ
13 ltm1 8792 . . . . . . . . . . . 12 (0 ∈ ℝ → (0 − 1) < 0)
1412, 13ax-mp 5 . . . . . . . . . . 11 (0 − 1) < 0
1514orci 731 . . . . . . . . . 10 ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))
16 bcval4 10716 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
1711, 15, 16mp3an23 1329 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C(0 − 1)) = 0)
187, 17oveq12d 5887 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = (1 + 0))
19 bcn0 10719 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
201, 19syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
216, 18, 203eqtr4a 2236 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))
22 oveq2 5877 . . . . . . . . 9 (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0))
23 oveq1 5876 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 − 1) = (0 − 1))
2423oveq2d 5885 . . . . . . . . 9 (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1)))
2522, 24oveq12d 5887 . . . . . . . 8 (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1))))
26 oveq2 5877 . . . . . . . 8 (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0))
2725, 26eqeq12d 2192 . . . . . . 7 (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)))
2821, 27syl5ibrcom 157 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
29 simpr 110 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))
30 0p1e1 9022 . . . . . . . . . 10 (0 + 1) = 1
3130oveq1i 5879 . . . . . . . . 9 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
3229, 31eleqtrdi 2270 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1)))
33 nn0p1nn 9204 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
34 nnuz 9552 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3533, 34eleqtrdi 2270 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
36 fzm1 10086 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (ℤ‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))))
3736biimpa 296 . . . . . . . . . 10 (((𝑁 + 1) ∈ (ℤ‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
3835, 37sylan 283 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
39 nn0cn 9175 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 ax-1cn 7895 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 pncan 8153 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4239, 40, 41sylancl 413 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4342oveq2d 5885 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4443eleq2d 2247 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ↔ 𝐾 ∈ (1...𝑁)))
4544biimpa 296 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁))
46 1eluzge0 9563 . . . . . . . . . . . . . . 15 1 ∈ (ℤ‘0)
47 fzss1 10049 . . . . . . . . . . . . . . 15 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
4846, 47ax-mp 5 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3151 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
50 bcp1n 10725 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
5149, 50syl 14 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
52 bcrpcl 10717 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5349, 52syl 14 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5453rpcnd 9685 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ)
55 elfzuz2 10015 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5655, 34eleqtrrdi 2271 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
5756peano2nnd 8923 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ)
5857nncnd 8922 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ)
5956nncnd 8922 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
60 1cnd 7964 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
61 elfzelz 10011 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ)
6261zcnd 9365 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
6359, 60, 62addsubd 8279 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
64 fznn0sub 10043 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
65 nn0p1nn 9204 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
6664, 65syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
6763, 66eqeltrd 2254 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
6867nncnd 8922 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
6967nnap0d 8954 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) # 0)
7054, 58, 68, 69div12apd 8773 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))))
7167nnrpd 9681 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ+)
7253, 71rpdivcld 9701 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℝ+)
7372rpcnd 9685 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
7458, 73mulcomd 7969 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7570, 74eqtrd 2210 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7658, 62npcand 8262 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1))
7776oveq2d 5885 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7873, 68, 62adddid 7972 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7975, 77, 783eqtr2d 2216 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
8054, 68, 69divcanap1d 8737 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾))
81 elfznn 10040 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
8281nnap0d 8954 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → 𝐾 # 0)
8354, 68, 62, 69, 82divdivap2d 8769 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)))
84 bcm1k 10724 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8559, 62, 60subsub3d 8288 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾))
8685oveq1d 5884 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾))
8786oveq2d 5885 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
8884, 87eqtrd 2210 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
89 fzelp1 10060 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1)))
9057nnzd 9363 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ)
91 elfzm1b 10084 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9261, 90, 91syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9389, 92mpbid 147 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))
9459, 40, 41sylancl 413 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁)
9594oveq2d 5885 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
9693, 95eleqtrd 2256 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
97 bcrpcl 10717 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9896, 97syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9998rpcnd 9685 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℂ)
10081nnrpd 9681 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℝ+)
10171, 100rpdivcld 9701 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℝ+)
102101rpcnd 9685 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ)
10368, 62, 69, 82divap0d 8752 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) # 0)
10454, 99, 102, 103divmulap3d 8771 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))))
10588, 104mpbird 167 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)))
10654, 62, 68, 69div23apd 8774 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))
10783, 105, 1063eqtr3rd 2219 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1)))
10880, 107oveq12d 5887 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1))))
10951, 79, 1083eqtrrd 2215 . . . . . . . . . . 11 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
11045, 109syl 14 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
111 oveq2 5877 . . . . . . . . . . . . 13 (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1)))
11233nnzd 9363 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
113 nn0re 9174 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
114113ltp1d 8876 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
115114olcd 734 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
116 bcval4 10716 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
117112, 115, 116mpd3an23 1339 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁C(𝑁 + 1)) = 0)
118111, 117sylan9eqr 2232 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0)
119 oveq1 5876 . . . . . . . . . . . . . . 15 (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1))
120119, 42sylan9eqr 2232 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁)
121120oveq2d 5885 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁))
122 bcnn 10721 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
123122adantr 276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1)
124121, 123eqtrd 2210 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1)
125118, 124oveq12d 5887 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1))
126 oveq2 5877 . . . . . . . . . . . 12 (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1)))
127 bcnn 10721 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
1281, 127syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
129126, 128sylan9eqr 2232 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1)
13030, 125, 1293eqtr4a 2236 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
131110, 130jaodan 797 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13238, 131syldan 282 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13332, 132syldan 282 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
134133ex 115 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
13528, 134jaod 717 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
1365, 135sylbid 150 . . . 4 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
137136imp 124 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
138137adantlr 477 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
139 00id 8088 . . 3 (0 + 0) = 0
140 fzelp1 10060 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
141140con3i 632 . . . . 5 𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁))
142 bcval3 10715 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1431423expa 1203 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
144141, 143sylan2 286 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C𝐾) = 0)
145 simpll 527 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
146 simplr 528 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝐾 ∈ ℤ)
147 peano2zm 9280 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
148146, 147syl 14 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝐾 − 1) ∈ ℤ)
14939adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
150149, 40, 41sylancl 413 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 + 1) − 1) = 𝑁)
151150oveq2d 5885 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
152151eleq2d 2247 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) ↔ (𝐾 − 1) ∈ (0...𝑁)))
153 id 19 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
1541nn0zd 9362 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
155153, 154, 91syl2anr 290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
156 fzp1ss 10059 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
1578, 156ax-mp 5 . . . . . . . . . 10 ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
15831, 157eqsstrri 3188 . . . . . . . . 9 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
159158sseli 3151 . . . . . . . 8 (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1)))
160155, 159syl6bir 164 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) → 𝐾 ∈ (0...(𝑁 + 1))))
161152, 160sylbird 170 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))))
162161con3dimp 635 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ (𝐾 − 1) ∈ (0...𝑁))
163 bcval3 10715 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℤ ∧ ¬ (𝐾 − 1) ∈ (0...𝑁)) → (𝑁C(𝐾 − 1)) = 0)
164145, 148, 162, 163syl3anc 1238 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C(𝐾 − 1)) = 0)
165144, 164oveq12d 5887 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0))
166145, 1syl 14 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
167 simpr 110 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ 𝐾 ∈ (0...(𝑁 + 1)))
168 bcval3 10715 . . . 4 (((𝑁 + 1) ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
169166, 146, 167, 168syl3anc 1238 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
170139, 165, 1693eqtr4a 2236 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
171 simpr 110 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
172 0zd 9254 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
173112adantr 276 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
174 fzdcel 10026 . . . 4 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → DECID 𝐾 ∈ (0...(𝑁 + 1)))
175 exmiddc 836 . . . 4 (DECID 𝐾 ∈ (0...(𝑁 + 1)) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
176174, 175syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
177171, 172, 173, 176syl3anc 1238 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1))))
178138, 170, 177mpjaodan 798 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cmin 8118   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cuz 9517  +crp 9640  ...cfz 9995  Ccbc 10711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-seqfrec 10432  df-fac 10690  df-bc 10712
This theorem is referenced by:  bccl  10731  bcn2m1  10733  bcn2p1  10734  binomlem  11475  bcxmas  11481  ex-bc  14137
  Copyright terms: Public domain W3C validator