Proof of Theorem bcpasc
| Step | Hyp | Ref
| Expression |
| 1 | | peano2nn0 9289 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 2 | | elfzp12 10174 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
| 3 | | nn0uz 9636 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | eleq2s 2291 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
| 5 | 1, 4 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))))) |
| 6 | | 1p0e1 9106 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
| 7 | | bcn0 10847 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁C0) =
1) |
| 8 | | 0z 9337 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 9 | | 1z 9352 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
| 10 | | zsubcl 9367 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈
ℤ) |
| 11 | 8, 9, 10 | mp2an 426 |
. . . . . . . . . 10
⊢ (0
− 1) ∈ ℤ |
| 12 | | 0re 8026 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 13 | | ltm1 8873 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ → (0 − 1) < 0) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0
− 1) < 0 |
| 15 | 14 | orci 732 |
. . . . . . . . . 10
⊢ ((0
− 1) < 0 ∨ 𝑁
< (0 − 1)) |
| 16 | | bcval4 10844 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) →
(𝑁C(0 − 1)) =
0) |
| 17 | 11, 15, 16 | mp3an23 1340 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁C(0 − 1)) =
0) |
| 18 | 7, 17 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((𝑁C0) + (𝑁C(0 − 1))) = (1 +
0)) |
| 19 | | bcn0 10847 |
. . . . . . . . 9
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1)C0) =
1) |
| 20 | 1, 19 | syl 14 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C0) =
1) |
| 21 | 6, 18, 20 | 3eqtr4a 2255 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)) |
| 22 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0)) |
| 23 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝐾 = 0 → (𝐾 − 1) = (0 −
1)) |
| 24 | 23 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1))) |
| 25 | 22, 24 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1)))) |
| 26 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0)) |
| 27 | 25, 26 | eqeq12d 2211 |
. . . . . . 7
⊢ (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))) |
| 28 | 21, 27 | syl5ibrcom 157 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝐾 = 0 →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
| 29 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) |
| 30 | | 0p1e1 9104 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
| 31 | 30 | oveq1i 5932 |
. . . . . . . . 9
⊢ ((0 +
1)...(𝑁 + 1)) = (1...(𝑁 + 1)) |
| 32 | 29, 31 | eleqtrdi 2289 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1))) |
| 33 | | nn0p1nn 9288 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 34 | | nnuz 9637 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 35 | 33, 34 | eleqtrdi 2289 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(ℤ≥‘1)) |
| 36 | | fzm1 10175 |
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))) |
| 37 | 36 | biimpa 296 |
. . . . . . . . . 10
⊢ (((𝑁 + 1) ∈
(ℤ≥‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) |
| 38 | 35, 37 | sylan 283 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) |
| 39 | | nn0cn 9259 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 40 | | ax-1cn 7972 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 41 | | pncan 8232 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
| 43 | 42 | oveq2d 5938 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (1...((𝑁 + 1)
− 1)) = (1...𝑁)) |
| 44 | 43 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(1...((𝑁 + 1) − 1))
↔ 𝐾 ∈ (1...𝑁))) |
| 45 | 44 | biimpa 296 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁)) |
| 46 | | 1eluzge0 9648 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
(ℤ≥‘0) |
| 47 | | fzss1 10138 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑁) ⊆ (0...𝑁)) |
| 48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(1...𝑁) ⊆
(0...𝑁) |
| 49 | 48 | sseli 3179 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁)) |
| 50 | | bcp1n 10853 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) |
| 51 | 49, 50 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) |
| 52 | | bcrpcl 10845 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈
ℝ+) |
| 53 | 49, 52 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈
ℝ+) |
| 54 | 53 | rpcnd 9773 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ) |
| 55 | | elfzuz2 10104 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
| 56 | 55, 34 | eleqtrrdi 2290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 57 | 56 | peano2nnd 9005 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ) |
| 58 | 57 | nncnd 9004 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ) |
| 59 | 56 | nncnd 9004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ) |
| 60 | | 1cnd 8042 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ) |
| 61 | | elfzelz 10100 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) |
| 62 | 61 | zcnd 9449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ) |
| 63 | 59, 60, 62 | addsubd 8358 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁 − 𝐾) + 1)) |
| 64 | | fznn0sub 10132 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
| 65 | | nn0p1nn 9288 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 − 𝐾) ∈ ℕ0 → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
| 66 | 64, 65 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
| 67 | 63, 66 | eqeltrd 2273 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ) |
| 68 | 67 | nncnd 9004 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ) |
| 69 | 67 | nnap0d 9036 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) # 0) |
| 70 | 54, 58, 68, 69 | div12apd 8854 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)))) |
| 71 | 67 | nnrpd 9769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈
ℝ+) |
| 72 | 53, 71 | rpdivcld 9789 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈
ℝ+) |
| 73 | 72 | rpcnd 9773 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ) |
| 74 | 58, 73 | mulcomd 8048 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
| 75 | 70, 74 | eqtrd 2229 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
| 76 | 58, 62 | npcand 8341 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1)) |
| 77 | 76 | oveq2d 5938 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1))) |
| 78 | 73, 68, 62 | adddid 8051 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))) |
| 79 | 75, 77, 78 | 3eqtr2d 2235 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))) |
| 80 | 54, 68, 69 | divcanap1d 8818 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾)) |
| 81 | | elfznn 10129 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| 82 | 81 | nnap0d 9036 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 # 0) |
| 83 | 54, 68, 62, 69, 82 | divdivap2d 8850 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾))) |
| 84 | | bcm1k 10852 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) |
| 85 | 59, 62, 60 | subsub3d 8367 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾)) |
| 86 | 85 | oveq1d 5937 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾)) |
| 87 | 86 | oveq2d 5938 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))) |
| 88 | 84, 87 | eqtrd 2229 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))) |
| 89 | | fzelp1 10149 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1))) |
| 90 | 57 | nnzd 9447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ) |
| 91 | | elfzm1b 10173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) →
(𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))) |
| 92 | 61, 90, 91 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))) |
| 93 | 89, 92 | mpbid 147 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))) |
| 94 | 59, 40, 41 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁) |
| 95 | 94 | oveq2d 5938 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
| 96 | 93, 95 | eleqtrd 2275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁)) |
| 97 | | bcrpcl 10845 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℝ+) |
| 98 | 96, 97 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℝ+) |
| 99 | 98 | rpcnd 9773 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈
ℂ) |
| 100 | 81 | nnrpd 9769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈
ℝ+) |
| 101 | 71, 100 | rpdivcld 9789 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈
ℝ+) |
| 102 | 101 | rpcnd 9773 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ) |
| 103 | 68, 62, 69, 82 | divap0d 8833 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) # 0) |
| 104 | 54, 99, 102, 103 | divmulap3d 8852 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))) |
| 105 | 88, 104 | mpbird 167 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1))) |
| 106 | 54, 62, 68, 69 | div23apd 8855 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) |
| 107 | 83, 105, 106 | 3eqtr3rd 2238 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1))) |
| 108 | 80, 107 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1)))) |
| 109 | 51, 79, 108 | 3eqtrrd 2234 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 110 | 45, 109 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...((𝑁 + 1) − 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 111 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1))) |
| 112 | 33 | nnzd 9447 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
| 113 | | nn0re 9258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 114 | 113 | ltp1d 8957 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 < (𝑁 + 1)) |
| 115 | 114 | olcd 735 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) < 0 ∨
𝑁 < (𝑁 + 1))) |
| 116 | | bcval4 10844 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ ∧ ((𝑁 + 1) <
0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0) |
| 117 | 112, 115,
116 | mpd3an23 1350 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑁C(𝑁 + 1)) = 0) |
| 118 | 111, 117 | sylan9eqr 2251 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0) |
| 119 | | oveq1 5929 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1)) |
| 120 | 119, 42 | sylan9eqr 2251 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁) |
| 121 | 120 | oveq2d 5938 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁)) |
| 122 | | bcnn 10849 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁C𝑁) = 1) |
| 123 | 122 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1) |
| 124 | 121, 123 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1) |
| 125 | 118, 124 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1)) |
| 126 | | oveq2 5930 |
. . . . . . . . . . . 12
⊢ (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1))) |
| 127 | | bcnn 10849 |
. . . . . . . . . . . . 13
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 + 1)) = 1) |
| 128 | 1, 127 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 + 1)) = 1) |
| 129 | 126, 128 | sylan9eqr 2251 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1) |
| 130 | 30, 125, 129 | 3eqtr4a 2255 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 131 | 110, 130 | jaodan 798 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐾 ∈
(1...((𝑁 + 1) − 1))
∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 132 | 38, 131 | syldan 282 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 133 | 32, 132 | syldan 282 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ((0 +
1)...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 134 | 133 | ex 115 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈ ((0 +
1)...(𝑁 + 1)) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
| 135 | 28, 134 | jaod 718 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
| 136 | 5, 135 | sylbid 150 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐾 ∈
(0...(𝑁 + 1)) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))) |
| 137 | 136 | imp 124 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 138 | 137 | adantlr 477 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 139 | | 00id 8167 |
. . 3
⊢ (0 + 0) =
0 |
| 140 | | fzelp1 10149 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))) |
| 141 | 140 | con3i 633 |
. . . . 5
⊢ (¬
𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁)) |
| 142 | | bcval3 10843 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ
∧ ¬ 𝐾 ∈
(0...𝑁)) → (𝑁C𝐾) = 0) |
| 143 | 142 | 3expa 1205 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...𝑁)) → (𝑁C𝐾) = 0) |
| 144 | 141, 143 | sylan2 286 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁C𝐾) = 0) |
| 145 | | simpll 527 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → 𝑁 ∈
ℕ0) |
| 146 | | simplr 528 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → 𝐾 ∈
ℤ) |
| 147 | | peano2zm 9364 |
. . . . . 6
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
| 148 | 146, 147 | syl 14 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝐾 − 1) ∈
ℤ) |
| 149 | 39 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ 𝑁 ∈
ℂ) |
| 150 | 149, 40, 41 | sylancl 413 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝑁 + 1) − 1)
= 𝑁) |
| 151 | 150 | oveq2d 5938 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (0...((𝑁 + 1)
− 1)) = (0...𝑁)) |
| 152 | 151 | eleq2d 2266 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...((𝑁 + 1)
− 1)) ↔ (𝐾
− 1) ∈ (0...𝑁))) |
| 153 | | id 19 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℤ) |
| 154 | 1 | nn0zd 9446 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
| 155 | 153, 154,
91 | syl2anr 290 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝐾 ∈
(1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) −
1)))) |
| 156 | | fzp1ss 10148 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))) |
| 157 | 8, 156 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((0 +
1)...(𝑁 + 1)) ⊆
(0...(𝑁 +
1)) |
| 158 | 31, 157 | eqsstrri 3216 |
. . . . . . . . 9
⊢
(1...(𝑁 + 1))
⊆ (0...(𝑁 +
1)) |
| 159 | 158 | sseli 3179 |
. . . . . . . 8
⊢ (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1))) |
| 160 | 155, 159 | biimtrrdi 164 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...((𝑁 + 1)
− 1)) → 𝐾 ∈
(0...(𝑁 +
1)))) |
| 161 | 152, 160 | sylbird 170 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝐾 − 1)
∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))) |
| 162 | 161 | con3dimp 636 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → ¬
(𝐾 − 1) ∈
(0...𝑁)) |
| 163 | | bcval3 10843 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐾 − 1) ∈
ℤ ∧ ¬ (𝐾
− 1) ∈ (0...𝑁))
→ (𝑁C(𝐾 − 1)) =
0) |
| 164 | 145, 148,
162, 163 | syl3anc 1249 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁C(𝐾 − 1)) = 0) |
| 165 | 144, 164 | oveq12d 5940 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0)) |
| 166 | 145, 1 | syl 14 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
(𝑁 + 1) ∈
ℕ0) |
| 167 | | simpr 110 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) → ¬
𝐾 ∈ (0...(𝑁 + 1))) |
| 168 | | bcval3 10843 |
. . . 4
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝐾 ∈ ℤ
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁 + 1)C𝐾) = 0) |
| 169 | 166, 146,
167, 168 | syl3anc 1249 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁 + 1)C𝐾) = 0) |
| 170 | 139, 165,
169 | 3eqtr4a 2255 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
∧ ¬ 𝐾 ∈
(0...(𝑁 + 1))) →
((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |
| 171 | | simpr 110 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ 𝐾 ∈
ℤ) |
| 172 | | 0zd 9338 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ 0 ∈ ℤ) |
| 173 | 112 | adantr 276 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝑁 + 1) ∈
ℤ) |
| 174 | | fzdcel 10115 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝑁 + 1)
∈ ℤ) → DECID 𝐾 ∈ (0...(𝑁 + 1))) |
| 175 | | exmiddc 837 |
. . . 4
⊢
(DECID 𝐾 ∈ (0...(𝑁 + 1)) → (𝐾 ∈ (0...(𝑁 + 1)) ∨ ¬ 𝐾 ∈ (0...(𝑁 + 1)))) |
| 176 | 174, 175 | syl 14 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝑁 + 1)
∈ ℤ) → (𝐾
∈ (0...(𝑁 + 1)) ∨
¬ 𝐾 ∈ (0...(𝑁 + 1)))) |
| 177 | 171, 172,
173, 176 | syl3anc 1249 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝐾 ∈
(0...(𝑁 + 1)) ∨ ¬
𝐾 ∈ (0...(𝑁 + 1)))) |
| 178 | 138, 170,
177 | mpjaodan 799 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) |