ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim2i GIF version

Theorem 3anim2i 1176
Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim2i ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))

Proof of Theorem 3anim2i
StepHypRef Expression
1 id 19 . 2 (𝜒𝜒)
2 3animi.1 . 2 (𝜑𝜓)
3 id 19 . 2 (𝜃𝜃)
41, 2, 33anim123i 1174 1 ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  ctssdclemr  7077  elfzo0z  10119
  Copyright terms: Public domain W3C validator