Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzo0z | GIF version |
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10117 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
Ref | Expression |
---|---|
elfzo0z | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10117 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | |
2 | nnz 9210 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
3 | 2 | 3anim2i 1176 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
4 | simp1 987 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
5 | elnn0z 9204 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
6 | 0red 7900 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ) | |
7 | zre 9195 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
8 | 7 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
9 | zre 9195 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
10 | 9 | adantl 275 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
11 | lelttr 7987 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) | |
12 | 6, 8, 10, 11 | syl3anc 1228 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) |
13 | elnnz 9201 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵)) | |
14 | 13 | simplbi2 383 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
15 | 14 | adantl 275 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
16 | 12, 15 | syld 45 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)) |
17 | 16 | expd 256 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
18 | 17 | impancom 258 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
19 | 5, 18 | sylbi 120 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
20 | 19 | 3imp 1183 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ) |
21 | simp3 989 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
22 | 4, 20, 21 | 3jca 1167 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
23 | 3, 22 | impbii 125 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
24 | 1, 23 | bitri 183 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 < clt 7933 ≤ cle 7934 ℕcn 8857 ℕ0cn0 9114 ℤcz 9191 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |