| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzo0z | GIF version | ||
| Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10370 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| Ref | Expression |
|---|---|
| elfzo0z | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 10370 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | |
| 2 | nnz 9453 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 3 | 2 | 3anim2i 1210 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
| 4 | simp1 1021 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
| 5 | elnn0z 9447 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
| 6 | 0red 8135 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ) | |
| 7 | zre 9438 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 8 | 7 | adantr 276 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 9 | zre 9438 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 10 | 9 | adantl 277 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 11 | lelttr 8223 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) | |
| 12 | 6, 8, 10, 11 | syl3anc 1271 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) |
| 13 | elnnz 9444 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵)) | |
| 14 | 13 | simplbi2 385 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
| 15 | 14 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
| 16 | 12, 15 | syld 45 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)) |
| 17 | 16 | expd 258 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
| 18 | 17 | impancom 260 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
| 19 | 5, 18 | sylbi 121 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
| 20 | 19 | 3imp 1217 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ) |
| 21 | simp3 1023 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 22 | 4, 20, 21 | 3jca 1201 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
| 23 | 3, 22 | impbii 126 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
| 24 | 1, 23 | bitri 184 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 0cc0 7987 < clt 8169 ≤ cle 8170 ℕcn 9098 ℕ0cn0 9357 ℤcz 9434 ..^cfzo 10326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-fzo 10327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |