ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0z GIF version

Theorem elfzo0z 10127
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10125 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
elfzo0z (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))

Proof of Theorem elfzo0z
StepHypRef Expression
1 elfzo0 10125 . 2 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
2 nnz 9218 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
323anim2i 1181 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
4 simp1 992 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0)
5 elnn0z 9212 . . . . . 6 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
6 0red 7908 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ)
7 zre 9203 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
87adantr 274 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
9 zre 9203 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
109adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
11 lelttr 7995 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
126, 8, 10, 11syl3anc 1233 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
13 elnnz 9209 . . . . . . . . . . 11 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵))
1413simplbi2 383 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 < 𝐵𝐵 ∈ ℕ))
1514adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵𝐵 ∈ ℕ))
1612, 15syld 45 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 𝐵 ∈ ℕ))
1716expd 256 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐴 < 𝐵𝐵 ∈ ℕ)))
1817impancom 258 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (𝐵 ∈ ℤ → (𝐴 < 𝐵𝐵 ∈ ℕ)))
195, 18sylbi 120 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℤ → (𝐴 < 𝐵𝐵 ∈ ℕ)))
20193imp 1188 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)
21 simp3 994 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
224, 20, 213jca 1172 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
233, 22impbii 125 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
241, 23bitri 183 1 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141   class class class wbr 3987  (class class class)co 5850  cr 7760  0cc0 7761   < clt 7941  cle 7942  cn 8865  0cn0 9122  cz 9199  ..^cfzo 10085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator