Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzo0z | GIF version |
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 10125 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
Ref | Expression |
---|---|
elfzo0z | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10125 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | |
2 | nnz 9218 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
3 | 2 | 3anim2i 1181 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
4 | simp1 992 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
5 | elnn0z 9212 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
6 | 0red 7908 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ) | |
7 | zre 9203 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
8 | 7 | adantr 274 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
9 | zre 9203 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
10 | 9 | adantl 275 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
11 | lelttr 7995 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) | |
12 | 6, 8, 10, 11 | syl3anc 1233 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 0 < 𝐵)) |
13 | elnnz 9209 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵)) | |
14 | 13 | simplbi2 383 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℤ → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
15 | 14 | adantl 275 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵 → 𝐵 ∈ ℕ)) |
16 | 12, 15 | syld 45 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)) |
17 | 16 | expd 256 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
18 | 17 | impancom 258 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
19 | 5, 18 | sylbi 120 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℤ → (𝐴 < 𝐵 → 𝐵 ∈ ℕ))) |
20 | 19 | 3imp 1188 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ) |
21 | simp3 994 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
22 | 4, 20, 21 | 3jca 1172 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
23 | 3, 22 | impbii 125 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
24 | 1, 23 | bitri 183 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5850 ℝcr 7760 0cc0 7761 < clt 7941 ≤ cle 7942 ℕcn 8865 ℕ0cn0 9122 ℤcz 9199 ..^cfzo 10085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-fz 9953 df-fzo 10086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |