ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0z GIF version

Theorem elfzo0z 9990
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 9988 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
elfzo0z (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))

Proof of Theorem elfzo0z
StepHypRef Expression
1 elfzo0 9988 . 2 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
2 nnz 9095 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
323anim2i 1169 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
4 simp1 982 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0)
5 elnn0z 9089 . . . . . 6 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
6 0red 7789 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ)
7 zre 9080 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
87adantr 274 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
9 zre 9080 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
109adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
11 lelttr 7874 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
126, 8, 10, 11syl3anc 1217 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
13 elnnz 9086 . . . . . . . . . . 11 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℤ ∧ 0 < 𝐵))
1413simplbi2 383 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 < 𝐵𝐵 ∈ ℕ))
1514adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 < 𝐵𝐵 ∈ ℕ))
1612, 15syld 45 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 𝐵 ∈ ℕ))
1716expd 256 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐴 < 𝐵𝐵 ∈ ℕ)))
1817impancom 258 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (𝐵 ∈ ℤ → (𝐴 < 𝐵𝐵 ∈ ℕ)))
195, 18sylbi 120 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℤ → (𝐴 < 𝐵𝐵 ∈ ℕ)))
20193imp 1176 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℕ)
21 simp3 984 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
224, 20, 213jca 1162 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
233, 22impbii 125 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
241, 23bitri 183 1 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3935  (class class class)co 5780  cr 7641  0cc0 7642   < clt 7822  cle 7823  cn 8742  0cn0 8999  cz 9076  ..^cfzo 9948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-ltadd 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-inn 8743  df-n0 9000  df-z 9077  df-uz 9349  df-fz 9820  df-fzo 9949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator