| Step | Hyp | Ref
| Expression |
| 1 | | foeq1 5476 |
. . 3
⊢ (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o))) |
| 2 | 1 | cbvexv 1933 |
. 2
⊢
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
| 3 | | id 19 |
. . . . . 6
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
| 4 | | eqid 2196 |
. . . . . 6
⊢ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} |
| 5 | | eqid 2196 |
. . . . . 6
⊢ (◡inl ∘ 𝑔) = (◡inl ∘ 𝑔) |
| 6 | 3, 4, 5 | ctssdccl 7177 |
. . . . 5
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 7 | | djulf1o 7124 |
. . . . . . . . 9
⊢
inl:V–1-1-onto→({∅} × V) |
| 8 | | f1ocnv 5517 |
. . . . . . . . 9
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) |
| 9 | | f1ofun 5506 |
. . . . . . . . 9
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) |
| 10 | 7, 8, 9 | mp2b 8 |
. . . . . . . 8
⊢ Fun ◡inl |
| 11 | | vex 2766 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
| 12 | | cofunexg 6166 |
. . . . . . . 8
⊢ ((Fun
◡inl ∧ 𝑔 ∈ V) → (◡inl ∘ 𝑔) ∈ V) |
| 13 | 10, 11, 12 | mp2an 426 |
. . . . . . 7
⊢ (◡inl ∘ 𝑔) ∈ V |
| 14 | | foeq1 5476 |
. . . . . . 7
⊢ (𝑓 = (◡inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ↔ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
| 15 | 13, 14 | spcev 2859 |
. . . . . 6
⊢ ((◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴) |
| 16 | 15 | 3anim2i 1188 |
. . . . 5
⊢ (({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 17 | 6, 16 | syl 14 |
. . . 4
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 18 | | omex 4629 |
. . . . . 6
⊢ ω
∈ V |
| 19 | 18 | rabex 4177 |
. . . . 5
⊢ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ∈ V |
| 20 | | sseq1 3206 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω)) |
| 21 | | foeq2 5477 |
. . . . . . 7
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠–onto→𝐴 ↔ 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
| 22 | 21 | exbidv 1839 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠–onto→𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
| 23 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑛 ∈ 𝑠 ↔ 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 24 | 23 | dcbid 839 |
. . . . . . 7
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛 ∈ 𝑠 ↔ DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 25 | 24 | ralbidv 2497 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
| 26 | 20, 22, 25 | 3anbi123d 1323 |
. . . . 5
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}))) |
| 27 | 19, 26 | spcev 2859 |
. . . 4
⊢ (({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
| 28 | 17, 27 | syl 14 |
. . 3
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
| 29 | 28 | exlimiv 1612 |
. 2
⊢
(∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
| 30 | 2, 29 | sylbi 121 |
1
⊢
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |