ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr GIF version

Theorem ctssdclemr 6997
Description: Lemma for ctssdc 6998. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Distinct variable groups:   𝐴,𝑓,𝑠   𝐴,𝑛,𝑠

Proof of Theorem ctssdclemr
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5341 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
21cbvexv 1890 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3 id 19 . . . . . 6 (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o))
4 eqid 2139 . . . . . 6 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}
5 eqid 2139 . . . . . 6 (inl ∘ 𝑔) = (inl ∘ 𝑔)
63, 4, 5ctssdccl 6996 . . . . 5 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
7 djulf1o 6943 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
8 f1ocnv 5380 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
9 f1ofun 5369 . . . . . . . . 9 (inl:({∅} × V)–1-1-onto→V → Fun inl)
107, 8, 9mp2b 8 . . . . . . . 8 Fun inl
11 vex 2689 . . . . . . . 8 𝑔 ∈ V
12 cofunexg 6009 . . . . . . . 8 ((Fun inl ∧ 𝑔 ∈ V) → (inl ∘ 𝑔) ∈ V)
1310, 11, 12mp2an 422 . . . . . . 7 (inl ∘ 𝑔) ∈ V
14 foeq1 5341 . . . . . . 7 (𝑓 = (inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ↔ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
1513, 14spcev 2780 . . . . . 6 ((inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴)
16153anim2i 1168 . . . . 5 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
176, 16syl 14 . . . 4 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
18 omex 4507 . . . . . 6 ω ∈ V
1918rabex 4072 . . . . 5 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ∈ V
20 sseq1 3120 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω))
21 foeq2 5342 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠onto𝐴𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
2221exbidv 1797 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠onto𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
23 eleq2 2203 . . . . . . . 8 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑛𝑠𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2423dcbid 823 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛𝑠DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2524ralbidv 2437 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2620, 22, 253anbi123d 1290 . . . . 5 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)})))
2719, 26spcev 2780 . . . 4 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2817, 27syl 14 . . 3 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2928exlimiv 1577 . 2 (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
302, 29sylbi 120 1 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wral 2416  {crab 2420  Vcvv 2686  wss 3071  c0 3363  {csn 3527  ωcom 4504   × cxp 4537  ccnv 4538  cima 4542  ccom 4543  Fun wfun 5117  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  ctssdc  6998
  Copyright terms: Public domain W3C validator