Step | Hyp | Ref
| Expression |
1 | | foeq1 5406 |
. . 3
⊢ (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o))) |
2 | 1 | cbvexv 1906 |
. 2
⊢
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
3 | | id 19 |
. . . . . 6
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
4 | | eqid 2165 |
. . . . . 6
⊢ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} |
5 | | eqid 2165 |
. . . . . 6
⊢ (◡inl ∘ 𝑔) = (◡inl ∘ 𝑔) |
6 | 3, 4, 5 | ctssdccl 7076 |
. . . . 5
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
7 | | djulf1o 7023 |
. . . . . . . . 9
⊢
inl:V–1-1-onto→({∅} × V) |
8 | | f1ocnv 5445 |
. . . . . . . . 9
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) |
9 | | f1ofun 5434 |
. . . . . . . . 9
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) |
10 | 7, 8, 9 | mp2b 8 |
. . . . . . . 8
⊢ Fun ◡inl |
11 | | vex 2729 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
12 | | cofunexg 6077 |
. . . . . . . 8
⊢ ((Fun
◡inl ∧ 𝑔 ∈ V) → (◡inl ∘ 𝑔) ∈ V) |
13 | 10, 11, 12 | mp2an 423 |
. . . . . . 7
⊢ (◡inl ∘ 𝑔) ∈ V |
14 | | foeq1 5406 |
. . . . . . 7
⊢ (𝑓 = (◡inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ↔ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
15 | 13, 14 | spcev 2821 |
. . . . . 6
⊢ ((◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴) |
16 | 15 | 3anim2i 1176 |
. . . . 5
⊢ (({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (◡inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
17 | 6, 16 | syl 14 |
. . . 4
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
18 | | omex 4570 |
. . . . . 6
⊢ ω
∈ V |
19 | 18 | rabex 4126 |
. . . . 5
⊢ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ∈ V |
20 | | sseq1 3165 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω)) |
21 | | foeq2 5407 |
. . . . . . 7
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠–onto→𝐴 ↔ 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
22 | 21 | exbidv 1813 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠–onto→𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴)) |
23 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (𝑛 ∈ 𝑠 ↔ 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
24 | 23 | dcbid 828 |
. . . . . . 7
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛 ∈ 𝑠 ↔ DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
25 | 24 | ralbidv 2466 |
. . . . . 6
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)})) |
26 | 20, 22, 25 | 3anbi123d 1302 |
. . . . 5
⊢ (𝑠 = {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}))) |
27 | 19, 26 | spcev 2821 |
. . . 4
⊢ (({𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔‘𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
28 | 17, 27 | syl 14 |
. . 3
⊢ (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
29 | 28 | exlimiv 1586 |
. 2
⊢
(∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |
30 | 2, 29 | sylbi 120 |
1
⊢
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑠)) |