ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr GIF version

Theorem ctssdclemr 7077
Description: Lemma for ctssdc 7078. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Distinct variable groups:   𝐴,𝑓,𝑠   𝐴,𝑛,𝑠

Proof of Theorem ctssdclemr
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5406 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
21cbvexv 1906 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3 id 19 . . . . . 6 (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o))
4 eqid 2165 . . . . . 6 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}
5 eqid 2165 . . . . . 6 (inl ∘ 𝑔) = (inl ∘ 𝑔)
63, 4, 5ctssdccl 7076 . . . . 5 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
7 djulf1o 7023 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
8 f1ocnv 5445 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
9 f1ofun 5434 . . . . . . . . 9 (inl:({∅} × V)–1-1-onto→V → Fun inl)
107, 8, 9mp2b 8 . . . . . . . 8 Fun inl
11 vex 2729 . . . . . . . 8 𝑔 ∈ V
12 cofunexg 6077 . . . . . . . 8 ((Fun inl ∧ 𝑔 ∈ V) → (inl ∘ 𝑔) ∈ V)
1310, 11, 12mp2an 423 . . . . . . 7 (inl ∘ 𝑔) ∈ V
14 foeq1 5406 . . . . . . 7 (𝑓 = (inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ↔ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
1513, 14spcev 2821 . . . . . 6 ((inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴)
16153anim2i 1176 . . . . 5 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
176, 16syl 14 . . . 4 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
18 omex 4570 . . . . . 6 ω ∈ V
1918rabex 4126 . . . . 5 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ∈ V
20 sseq1 3165 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω))
21 foeq2 5407 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠onto𝐴𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
2221exbidv 1813 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠onto𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
23 eleq2 2230 . . . . . . . 8 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑛𝑠𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2423dcbid 828 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛𝑠DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2524ralbidv 2466 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2620, 22, 253anbi123d 1302 . . . . 5 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)})))
2719, 26spcev 2821 . . . 4 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2817, 27syl 14 . . 3 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2928exlimiv 1586 . 2 (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
302, 29sylbi 120 1 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2444  {crab 2448  Vcvv 2726  wss 3116  c0 3409  {csn 3576  ωcom 4567   × cxp 4602  ccnv 4603  cima 4607  ccom 4608  Fun wfun 5182  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  ctssdc  7078
  Copyright terms: Public domain W3C validator