ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr GIF version

Theorem ctssdclemr 7178
Description: Lemma for ctssdc 7179. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Distinct variable groups:   𝐴,𝑓,𝑠   𝐴,𝑛,𝑠

Proof of Theorem ctssdclemr
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5476 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
21cbvexv 1933 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3 id 19 . . . . . 6 (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o))
4 eqid 2196 . . . . . 6 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}
5 eqid 2196 . . . . . 6 (inl ∘ 𝑔) = (inl ∘ 𝑔)
63, 4, 5ctssdccl 7177 . . . . 5 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
7 djulf1o 7124 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
8 f1ocnv 5517 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
9 f1ofun 5506 . . . . . . . . 9 (inl:({∅} × V)–1-1-onto→V → Fun inl)
107, 8, 9mp2b 8 . . . . . . . 8 Fun inl
11 vex 2766 . . . . . . . 8 𝑔 ∈ V
12 cofunexg 6166 . . . . . . . 8 ((Fun inl ∧ 𝑔 ∈ V) → (inl ∘ 𝑔) ∈ V)
1310, 11, 12mp2an 426 . . . . . . 7 (inl ∘ 𝑔) ∈ V
14 foeq1 5476 . . . . . . 7 (𝑓 = (inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ↔ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
1513, 14spcev 2859 . . . . . 6 ((inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴)
16153anim2i 1188 . . . . 5 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
176, 16syl 14 . . . 4 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
18 omex 4629 . . . . . 6 ω ∈ V
1918rabex 4177 . . . . 5 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ∈ V
20 sseq1 3206 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω))
21 foeq2 5477 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠onto𝐴𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
2221exbidv 1839 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠onto𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
23 eleq2 2260 . . . . . . . 8 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑛𝑠𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2423dcbid 839 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛𝑠DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2524ralbidv 2497 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2620, 22, 253anbi123d 1323 . . . . 5 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)})))
2719, 26spcev 2859 . . . 4 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2817, 27syl 14 . . 3 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2928exlimiv 1612 . 2 (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
302, 29sylbi 121 1 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  wss 3157  c0 3450  {csn 3622  ωcom 4626   × cxp 4661  ccnv 4662  cima 4666  ccom 4667  Fun wfun 5252  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  ctssdc  7179
  Copyright terms: Public domain W3C validator