ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemr GIF version

Theorem ctssdclemr 7171
Description: Lemma for ctssdc 7172. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
Assertion
Ref Expression
ctssdclemr (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Distinct variable groups:   𝐴,𝑓,𝑠   𝐴,𝑛,𝑠

Proof of Theorem ctssdclemr
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foeq1 5472 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
21cbvexv 1930 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
3 id 19 . . . . . 6 (𝑔:ω–onto→(𝐴 ⊔ 1o) → 𝑔:ω–onto→(𝐴 ⊔ 1o))
4 eqid 2193 . . . . . 6 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}
5 eqid 2193 . . . . . 6 (inl ∘ 𝑔) = (inl ∘ 𝑔)
63, 4, 5ctssdccl 7170 . . . . 5 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
7 djulf1o 7117 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
8 f1ocnv 5513 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
9 f1ofun 5502 . . . . . . . . 9 (inl:({∅} × V)–1-1-onto→V → Fun inl)
107, 8, 9mp2b 8 . . . . . . . 8 Fun inl
11 vex 2763 . . . . . . . 8 𝑔 ∈ V
12 cofunexg 6161 . . . . . . . 8 ((Fun inl ∧ 𝑔 ∈ V) → (inl ∘ 𝑔) ∈ V)
1310, 11, 12mp2an 426 . . . . . . 7 (inl ∘ 𝑔) ∈ V
14 foeq1 5472 . . . . . . 7 (𝑓 = (inl ∘ 𝑔) → (𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ↔ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
1513, 14spcev 2855 . . . . . 6 ((inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 → ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴)
16153anim2i 1188 . . . . 5 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ (inl ∘ 𝑔):{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
176, 16syl 14 . . . 4 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
18 omex 4625 . . . . . 6 ω ∈ V
1918rabex 4173 . . . . 5 {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ∈ V
20 sseq1 3202 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑠 ⊆ ω ↔ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω))
21 foeq2 5473 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑓:𝑠onto𝐴𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
2221exbidv 1836 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∃𝑓 𝑓:𝑠onto𝐴 ↔ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴))
23 eleq2 2257 . . . . . . . 8 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (𝑛𝑠𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2423dcbid 839 . . . . . . 7 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (DECID 𝑛𝑠DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2524ralbidv 2494 . . . . . 6 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → (∀𝑛 ∈ ω DECID 𝑛𝑠 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}))
2620, 22, 253anbi123d 1323 . . . . 5 (𝑠 = {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)})))
2719, 26spcev 2855 . . . 4 (({𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)} ⊆ ω ∧ ∃𝑓 𝑓:{𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}–onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ {𝑡 ∈ ω ∣ (𝑔𝑡) ∈ (inl “ 𝐴)}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2817, 27syl 14 . . 3 (𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
2928exlimiv 1609 . 2 (∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
302, 29sylbi 121 1 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  wss 3153  c0 3446  {csn 3618  ωcom 4622   × cxp 4657  ccnv 4658  cima 4662  ccom 4663  Fun wfun 5248  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  ctssdc  7172
  Copyright terms: Public domain W3C validator