| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anim123i | GIF version | ||
| Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anim123i.1 | ⊢ (𝜑 → 𝜓) |
| 3anim123i.2 | ⊢ (𝜒 → 𝜃) |
| 3anim123i.3 | ⊢ (𝜏 → 𝜂) |
| Ref | Expression |
|---|---|
| 3anim123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3ad2ant1 1021 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜓) |
| 3 | 3anim123i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | 3ad2ant2 1022 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜃) |
| 5 | 3anim123i.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 6 | 5 | 3ad2ant3 1023 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| 7 | 2, 4, 6 | 3jca 1180 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anim1i 1188 3anim2i 1189 3anim3i 1190 syl3an 1292 syl3anl 1301 spc3egv 2872 spc3gv 2873 eloprabga 6055 le2tri3i 8216 fzmmmeqm 10215 elfz1b 10247 elfz0fzfz0 10283 elfzmlbp 10289 elfzo1 10351 flltdivnn0lt 10484 pfxeq 11187 swrdswrd 11196 swrdccat 11226 modmulconst 12249 nndvdslegcd 12401 lgsmulsqcoprm 15638 |
| Copyright terms: Public domain | W3C validator |