| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anim123i | GIF version | ||
| Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anim123i.1 | ⊢ (𝜑 → 𝜓) |
| 3anim123i.2 | ⊢ (𝜒 → 𝜃) |
| 3anim123i.3 | ⊢ (𝜏 → 𝜂) |
| Ref | Expression |
|---|---|
| 3anim123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3ad2ant1 1042 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜓) |
| 3 | 3anim123i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | 3ad2ant2 1043 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜃) |
| 5 | 3anim123i.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 6 | 5 | 3ad2ant3 1044 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| 7 | 2, 4, 6 | 3jca 1201 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anim1i 1209 3anim2i 1210 3anim3i 1211 syl3an 1313 syl3anl 1322 spc3egv 2895 spc3gv 2896 eloprabga 6090 le2tri3i 8251 fzmmmeqm 10250 elfz1b 10282 elfz0fzfz0 10318 elfzmlbp 10324 elfzo1 10386 flltdivnn0lt 10519 pfxeq 11223 swrdswrd 11232 swrdccat 11262 modmulconst 12329 nndvdslegcd 12481 lgsmulsqcoprm 15719 |
| Copyright terms: Public domain | W3C validator |