ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i GIF version

Theorem 3anim123i 1179
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1 (𝜑𝜓)
3anim123i.2 (𝜒𝜃)
3anim123i.3 (𝜏𝜂)
Assertion
Ref Expression
3anim123i ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3 (𝜑𝜓)
213ad2ant1 1013 . 2 ((𝜑𝜒𝜏) → 𝜓)
3 3anim123i.2 . . 3 (𝜒𝜃)
433ad2ant2 1014 . 2 ((𝜑𝜒𝜏) → 𝜃)
5 3anim123i.3 . . 3 (𝜏𝜂)
653ad2ant3 1015 . 2 ((𝜑𝜒𝜏) → 𝜂)
72, 4, 63jca 1172 1 ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  3anim1i  1180  3anim2i  1181  3anim3i  1182  syl3an  1275  syl3anl  1284  spc3egv  2822  spc3gv  2823  eloprabga  5937  le2tri3i  8015  fzmmmeqm  10001  elfz1b  10033  elfz0fzfz0  10069  elfzmlbp  10075  elfzo1  10133  flltdivnn0lt  10247  modmulconst  11772  nndvdslegcd  11907  lgsmulsqcoprm  13700
  Copyright terms: Public domain W3C validator