| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anim123i | GIF version | ||
| Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anim123i.1 | ⊢ (𝜑 → 𝜓) |
| 3anim123i.2 | ⊢ (𝜒 → 𝜃) |
| 3anim123i.3 | ⊢ (𝜏 → 𝜂) |
| Ref | Expression |
|---|---|
| 3anim123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | 3ad2ant1 1021 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜓) |
| 3 | 3anim123i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | 3ad2ant2 1022 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜃) |
| 5 | 3anim123i.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 6 | 5 | 3ad2ant3 1023 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| 7 | 2, 4, 6 | 3jca 1180 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anim1i 1188 3anim2i 1189 3anim3i 1190 syl3an 1292 syl3anl 1301 spc3egv 2865 spc3gv 2866 eloprabga 6032 le2tri3i 8181 fzmmmeqm 10180 elfz1b 10212 elfz0fzfz0 10248 elfzmlbp 10254 elfzo1 10314 flltdivnn0lt 10447 modmulconst 12134 nndvdslegcd 12286 lgsmulsqcoprm 15523 |
| Copyright terms: Public domain | W3C validator |