Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anim123i | GIF version |
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anim123i.1 | ⊢ (𝜑 → 𝜓) |
3anim123i.2 | ⊢ (𝜒 → 𝜃) |
3anim123i.3 | ⊢ (𝜏 → 𝜂) |
Ref | Expression |
---|---|
3anim123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3ad2ant1 1008 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜓) |
3 | 3anim123i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | 3ad2ant2 1009 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜃) |
5 | 3anim123i.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
6 | 5 | 3ad2ant3 1010 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
7 | 2, 4, 6 | 3jca 1167 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3anim1i 1175 3anim2i 1176 3anim3i 1177 syl3an 1270 syl3anl 1279 spc3egv 2818 spc3gv 2819 eloprabga 5929 le2tri3i 8007 fzmmmeqm 9993 elfz1b 10025 elfz0fzfz0 10061 elfzmlbp 10067 elfzo1 10125 flltdivnn0lt 10239 modmulconst 11763 nndvdslegcd 11898 lgsmulsqcoprm 13597 |
Copyright terms: Public domain | W3C validator |