ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i GIF version

Theorem 3anim123i 1187
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1 (𝜑𝜓)
3anim123i.2 (𝜒𝜃)
3anim123i.3 (𝜏𝜂)
Assertion
Ref Expression
3anim123i ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3 (𝜑𝜓)
213ad2ant1 1021 . 2 ((𝜑𝜒𝜏) → 𝜓)
3 3anim123i.2 . . 3 (𝜒𝜃)
433ad2ant2 1022 . 2 ((𝜑𝜒𝜏) → 𝜃)
5 3anim123i.3 . . 3 (𝜏𝜂)
653ad2ant3 1023 . 2 ((𝜑𝜒𝜏) → 𝜂)
72, 4, 63jca 1180 1 ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3anim1i  1188  3anim2i  1189  3anim3i  1190  syl3an  1292  syl3anl  1301  spc3egv  2872  spc3gv  2873  eloprabga  6055  le2tri3i  8216  fzmmmeqm  10215  elfz1b  10247  elfz0fzfz0  10283  elfzmlbp  10289  elfzo1  10351  flltdivnn0lt  10484  pfxeq  11187  swrdswrd  11196  swrdccat  11226  modmulconst  12249  nndvdslegcd  12401  lgsmulsqcoprm  15638
  Copyright terms: Public domain W3C validator