ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i GIF version

Theorem 3anim123i 1208
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1 (𝜑𝜓)
3anim123i.2 (𝜒𝜃)
3anim123i.3 (𝜏𝜂)
Assertion
Ref Expression
3anim123i ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3 (𝜑𝜓)
213ad2ant1 1042 . 2 ((𝜑𝜒𝜏) → 𝜓)
3 3anim123i.2 . . 3 (𝜒𝜃)
433ad2ant2 1043 . 2 ((𝜑𝜒𝜏) → 𝜃)
5 3anim123i.3 . . 3 (𝜏𝜂)
653ad2ant3 1044 . 2 ((𝜑𝜒𝜏) → 𝜂)
72, 4, 63jca 1201 1 ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3anim1i  1209  3anim2i  1210  3anim3i  1211  syl3an  1313  syl3anl  1322  spc3egv  2895  spc3gv  2896  eloprabga  6090  le2tri3i  8251  fzmmmeqm  10250  elfz1b  10282  elfz0fzfz0  10318  elfzmlbp  10324  elfzo1  10386  flltdivnn0lt  10519  pfxeq  11223  swrdswrd  11232  swrdccat  11262  modmulconst  12329  nndvdslegcd  12481  lgsmulsqcoprm  15719
  Copyright terms: Public domain W3C validator