ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123i GIF version

Theorem 3anim123i 1187
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
Hypotheses
Ref Expression
3anim123i.1 (𝜑𝜓)
3anim123i.2 (𝜒𝜃)
3anim123i.3 (𝜏𝜂)
Assertion
Ref Expression
3anim123i ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))

Proof of Theorem 3anim123i
StepHypRef Expression
1 3anim123i.1 . . 3 (𝜑𝜓)
213ad2ant1 1021 . 2 ((𝜑𝜒𝜏) → 𝜓)
3 3anim123i.2 . . 3 (𝜒𝜃)
433ad2ant2 1022 . 2 ((𝜑𝜒𝜏) → 𝜃)
5 3anim123i.3 . . 3 (𝜏𝜂)
653ad2ant3 1023 . 2 ((𝜑𝜒𝜏) → 𝜂)
72, 4, 63jca 1180 1 ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3anim1i  1188  3anim2i  1189  3anim3i  1190  syl3an  1292  syl3anl  1301  spc3egv  2865  spc3gv  2866  eloprabga  6032  le2tri3i  8181  fzmmmeqm  10180  elfz1b  10212  elfz0fzfz0  10248  elfzmlbp  10254  elfzo1  10314  flltdivnn0lt  10447  modmulconst  12134  nndvdslegcd  12286  lgsmulsqcoprm  15523
  Copyright terms: Public domain W3C validator