| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3biant1d | GIF version | ||
| Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 304. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
| Ref | Expression |
|---|---|
| 3biantd.1 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| 3biant1d | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biantd.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | biantrurd 305 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓)))) |
| 3 | 3anass 984 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓))) | |
| 4 | 2, 3 | bitr4di 198 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |