ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3biant1d GIF version

Theorem 3biant1d 1366
Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 304. (Contributed by Alexander van der Vekens, 26-Sep-2017.)
Hypothesis
Ref Expression
3biantd.1 (𝜑𝜃)
Assertion
Ref Expression
3biant1d (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜒𝜓)))

Proof of Theorem 3biant1d
StepHypRef Expression
1 3biantd.1 . . 3 (𝜑𝜃)
21biantrurd 305 . 2 (𝜑 → ((𝜒𝜓) ↔ (𝜃 ∧ (𝜒𝜓))))
3 3anass 984 . 2 ((𝜃𝜒𝜓) ↔ (𝜃 ∧ (𝜒𝜓)))
42, 3bitr4di 198 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator