| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1167 3biant1d 1366 drex1 1820 elrab3t 2927 bnd2 4216 opbrop 4753 opelresi 4969 funcnv3 5335 fnssresb 5387 dff1o5 5530 fneqeql2 5688 fnniniseg2 5702 rexsupp 5703 dffo3 5726 fmptco 5745 fnressn 5769 fconst4m 5803 riota2df 5919 eloprabga 6031 frecabcl 6484 mptelixpg 6820 exmidfodomrlemreseldju 7307 enq0breq 7548 genpassl 7636 genpassu 7637 elnnnn0 9337 peano2z 9407 znnsub 9423 znn0sub 9437 uzin 9680 nn01to3 9737 rpnegap 9807 negelrp 9808 xsubge0 10002 divelunit 10123 elfz5 10138 uzsplit 10213 elfzonelfzo 10357 infssuzex 10374 adddivflid 10433 divfl0 10437 2shfti 11084 rexuz3 11243 clim2c 11537 fisumss 11645 bitsmod 12209 bitscmp 12211 bezoutlemmain 12261 nninfctlemfo 12303 dvdsfi 12503 pc2dvds 12595 1arith 12632 xpsfrnel 13118 xpsfrnel2 13120 ghmeqker 13549 lsslss 14085 zndvds 14353 znleval2 14358 eltg3 14471 lmbrf 14629 cnrest2 14650 cnptoprest 14653 cnptoprest2 14654 ismet2 14768 elbl2ps 14806 elbl2 14807 xblpnfps 14812 xblpnf 14813 bdxmet 14915 metcn 14928 cnbl0 14948 cnblcld 14949 mulc1cncf 15003 ellimc3apf 15074 pilem1 15193 wilthlem1 15394 lgsdilem 15446 lgsne0 15457 lgsabs1 15458 lgsquadlem1 15496 lgsquadlem2 15497 |
| Copyright terms: Public domain | W3C validator |