![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbirand 441 3anibar 1167 drex1 1809 elrab3t 2916 bnd2 4203 opbrop 4739 opelresi 4954 funcnv3 5317 fnssresb 5367 dff1o5 5510 fneqeql2 5668 fnniniseg2 5682 rexsupp 5683 dffo3 5706 fmptco 5725 fnressn 5745 fconst4m 5779 riota2df 5895 eloprabga 6006 frecabcl 6454 mptelixpg 6790 exmidfodomrlemreseldju 7262 enq0breq 7498 genpassl 7586 genpassu 7587 elnnnn0 9286 peano2z 9356 znnsub 9371 znn0sub 9385 uzin 9628 nn01to3 9685 rpnegap 9755 negelrp 9756 xsubge0 9950 divelunit 10071 elfz5 10086 uzsplit 10161 elfzonelfzo 10300 adddivflid 10364 divfl0 10368 2shfti 10978 rexuz3 11137 clim2c 11430 fisumss 11538 infssuzex 12089 bezoutlemmain 12138 nninfctlemfo 12180 pc2dvds 12471 1arith 12508 xpsfrnel 12930 xpsfrnel2 12932 ghmeqker 13344 lsslss 13880 zndvds 14148 znleval2 14153 eltg3 14236 lmbrf 14394 cnrest2 14415 cnptoprest 14418 cnptoprest2 14419 ismet2 14533 elbl2ps 14571 elbl2 14572 xblpnfps 14577 xblpnf 14578 bdxmet 14680 metcn 14693 cnbl0 14713 cnblcld 14714 mulc1cncf 14768 ellimc3apf 14839 pilem1 14955 wilthlem1 15153 lgsdilem 15184 lgsne0 15195 lgsabs1 15196 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |