| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1167 3biant1d 1366 drex1 1820 elrab3t 2927 bnd2 4216 opbrop 4752 opelresi 4967 funcnv3 5330 fnssresb 5382 dff1o5 5525 fneqeql2 5683 fnniniseg2 5697 rexsupp 5698 dffo3 5721 fmptco 5740 fnressn 5760 fconst4m 5794 riota2df 5910 eloprabga 6022 frecabcl 6475 mptelixpg 6811 exmidfodomrlemreseldju 7290 enq0breq 7531 genpassl 7619 genpassu 7620 elnnnn0 9320 peano2z 9390 znnsub 9406 znn0sub 9420 uzin 9663 nn01to3 9720 rpnegap 9790 negelrp 9791 xsubge0 9985 divelunit 10106 elfz5 10121 uzsplit 10196 elfzonelfzo 10340 infssuzex 10357 adddivflid 10416 divfl0 10420 2shfti 11061 rexuz3 11220 clim2c 11514 fisumss 11622 bitsmod 12186 bitscmp 12188 bezoutlemmain 12238 nninfctlemfo 12280 dvdsfi 12480 pc2dvds 12572 1arith 12609 xpsfrnel 13094 xpsfrnel2 13096 ghmeqker 13525 lsslss 14061 zndvds 14329 znleval2 14334 eltg3 14447 lmbrf 14605 cnrest2 14626 cnptoprest 14629 cnptoprest2 14630 ismet2 14744 elbl2ps 14782 elbl2 14783 xblpnfps 14788 xblpnf 14789 bdxmet 14891 metcn 14904 cnbl0 14924 cnblcld 14925 mulc1cncf 14979 ellimc3apf 15050 pilem1 15169 wilthlem1 15370 lgsdilem 15422 lgsne0 15433 lgsabs1 15434 lgsquadlem1 15472 lgsquadlem2 15473 |
| Copyright terms: Public domain | W3C validator |