| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1168 3biant1d 1367 drex1 1822 elrab3t 2932 bnd2 4225 opbrop 4762 opelresi 4979 funcnv3 5345 fnssresb 5397 dff1o5 5543 fneqeql2 5702 fnniniseg2 5716 rexsupp 5717 dffo3 5740 fmptco 5759 fnressn 5783 fconst4m 5817 riota2df 5933 eloprabga 6045 frecabcl 6498 mptelixpg 6834 exmidfodomrlemreseldju 7324 enq0breq 7569 genpassl 7657 genpassu 7658 elnnnn0 9358 peano2z 9428 znnsub 9444 znn0sub 9458 uzin 9701 nn01to3 9758 rpnegap 9828 negelrp 9829 xsubge0 10023 divelunit 10144 elfz5 10159 uzsplit 10234 elfzonelfzo 10381 infssuzex 10398 adddivflid 10457 divfl0 10461 swrdspsleq 11143 2shfti 11217 rexuz3 11376 clim2c 11670 fisumss 11778 bitsmod 12342 bitscmp 12344 bezoutlemmain 12394 nninfctlemfo 12436 dvdsfi 12636 pc2dvds 12728 1arith 12765 xpsfrnel 13251 xpsfrnel2 13253 ghmeqker 13682 lsslss 14218 zndvds 14486 znleval2 14491 eltg3 14604 lmbrf 14762 cnrest2 14783 cnptoprest 14786 cnptoprest2 14787 ismet2 14901 elbl2ps 14939 elbl2 14940 xblpnfps 14945 xblpnf 14946 bdxmet 15048 metcn 15061 cnbl0 15081 cnblcld 15082 mulc1cncf 15136 ellimc3apf 15207 pilem1 15326 wilthlem1 15527 lgsdilem 15579 lgsne0 15590 lgsabs1 15591 lgsquadlem1 15629 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |