Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ibar 299 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbirand 438 3anibar 1155 drex1 1786 elrab3t 2881 bnd2 4152 opbrop 4683 opelresi 4895 funcnv3 5250 fnssresb 5300 dff1o5 5441 fneqeql2 5594 fnniniseg2 5608 rexsupp 5609 dffo3 5632 fmptco 5651 fnressn 5671 fconst4m 5705 riota2df 5818 eloprabga 5929 frecabcl 6367 mptelixpg 6700 exmidfodomrlemreseldju 7156 enq0breq 7377 genpassl 7465 genpassu 7466 elnnnn0 9157 peano2z 9227 znnsub 9242 znn0sub 9256 uzin 9498 nn01to3 9555 rpnegap 9622 negelrp 9623 xsubge0 9817 divelunit 9938 elfz5 9952 uzsplit 10027 elfzonelfzo 10165 adddivflid 10227 divfl0 10231 2shfti 10773 rexuz3 10932 clim2c 11225 fisumss 11333 infssuzex 11882 bezoutlemmain 11931 pc2dvds 12261 1arith 12297 eltg3 12707 lmbrf 12865 cnrest2 12886 cnptoprest 12889 cnptoprest2 12890 ismet2 13004 elbl2ps 13042 elbl2 13043 xblpnfps 13048 xblpnf 13049 bdxmet 13151 metcn 13164 cnbl0 13184 cnblcld 13185 mulc1cncf 13226 ellimc3apf 13279 pilem1 13350 lgsdilem 13578 lgsne0 13589 lgsabs1 13590 |
Copyright terms: Public domain | W3C validator |