| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1167 drex1 1812 elrab3t 2919 bnd2 4207 opbrop 4743 opelresi 4958 funcnv3 5321 fnssresb 5373 dff1o5 5516 fneqeql2 5674 fnniniseg2 5688 rexsupp 5689 dffo3 5712 fmptco 5731 fnressn 5751 fconst4m 5785 riota2df 5901 eloprabga 6013 frecabcl 6466 mptelixpg 6802 exmidfodomrlemreseldju 7281 enq0breq 7522 genpassl 7610 genpassu 7611 elnnnn0 9311 peano2z 9381 znnsub 9396 znn0sub 9410 uzin 9653 nn01to3 9710 rpnegap 9780 negelrp 9781 xsubge0 9975 divelunit 10096 elfz5 10111 uzsplit 10186 elfzonelfzo 10325 infssuzex 10342 adddivflid 10401 divfl0 10405 2shfti 11015 rexuz3 11174 clim2c 11468 fisumss 11576 bitsmod 12140 bitscmp 12142 bezoutlemmain 12192 nninfctlemfo 12234 dvdsfi 12434 pc2dvds 12526 1arith 12563 xpsfrnel 13048 xpsfrnel2 13050 ghmeqker 13479 lsslss 14015 zndvds 14283 znleval2 14288 eltg3 14401 lmbrf 14559 cnrest2 14580 cnptoprest 14583 cnptoprest2 14584 ismet2 14698 elbl2ps 14736 elbl2 14737 xblpnfps 14742 xblpnf 14743 bdxmet 14845 metcn 14858 cnbl0 14878 cnblcld 14879 mulc1cncf 14933 ellimc3apf 15004 pilem1 15123 wilthlem1 15324 lgsdilem 15376 lgsne0 15387 lgsabs1 15388 lgsquadlem1 15426 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |