![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbirand 441 3anibar 1165 drex1 1798 elrab3t 2894 bnd2 4175 opbrop 4707 opelresi 4920 funcnv3 5280 fnssresb 5330 dff1o5 5472 fneqeql2 5627 fnniniseg2 5641 rexsupp 5642 dffo3 5665 fmptco 5684 fnressn 5704 fconst4m 5738 riota2df 5853 eloprabga 5964 frecabcl 6402 mptelixpg 6736 exmidfodomrlemreseldju 7201 enq0breq 7437 genpassl 7525 genpassu 7526 elnnnn0 9221 peano2z 9291 znnsub 9306 znn0sub 9320 uzin 9562 nn01to3 9619 rpnegap 9688 negelrp 9689 xsubge0 9883 divelunit 10004 elfz5 10019 uzsplit 10094 elfzonelfzo 10232 adddivflid 10294 divfl0 10298 2shfti 10842 rexuz3 11001 clim2c 11294 fisumss 11402 infssuzex 11952 bezoutlemmain 12001 pc2dvds 12331 1arith 12367 xpsfrnel 12768 xpsfrnel2 12770 lsslss 13473 eltg3 13642 lmbrf 13800 cnrest2 13821 cnptoprest 13824 cnptoprest2 13825 ismet2 13939 elbl2ps 13977 elbl2 13978 xblpnfps 13983 xblpnf 13984 bdxmet 14086 metcn 14099 cnbl0 14119 cnblcld 14120 mulc1cncf 14161 ellimc3apf 14214 pilem1 14285 lgsdilem 14513 lgsne0 14524 lgsabs1 14525 |
Copyright terms: Public domain | W3C validator |