| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mpbirand 441 3anibar 1167 drex1 1812 elrab3t 2919 bnd2 4206 opbrop 4742 opelresi 4957 funcnv3 5320 fnssresb 5370 dff1o5 5513 fneqeql2 5671 fnniniseg2 5685 rexsupp 5686 dffo3 5709 fmptco 5728 fnressn 5748 fconst4m 5782 riota2df 5898 eloprabga 6009 frecabcl 6457 mptelixpg 6793 exmidfodomrlemreseldju 7267 enq0breq 7503 genpassl 7591 genpassu 7592 elnnnn0 9292 peano2z 9362 znnsub 9377 znn0sub 9391 uzin 9634 nn01to3 9691 rpnegap 9761 negelrp 9762 xsubge0 9956 divelunit 10077 elfz5 10092 uzsplit 10167 elfzonelfzo 10306 infssuzex 10323 adddivflid 10382 divfl0 10386 2shfti 10996 rexuz3 11155 clim2c 11449 fisumss 11557 bezoutlemmain 12165 nninfctlemfo 12207 dvdsfi 12407 pc2dvds 12499 1arith 12536 xpsfrnel 12987 xpsfrnel2 12989 ghmeqker 13401 lsslss 13937 zndvds 14205 znleval2 14210 eltg3 14293 lmbrf 14451 cnrest2 14472 cnptoprest 14475 cnptoprest2 14476 ismet2 14590 elbl2ps 14628 elbl2 14629 xblpnfps 14634 xblpnf 14635 bdxmet 14737 metcn 14750 cnbl0 14770 cnblcld 14771 mulc1cncf 14825 ellimc3apf 14896 pilem1 15015 wilthlem1 15216 lgsdilem 15268 lgsne0 15279 lgsabs1 15280 lgsquadlem1 15318 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |