| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbirand 441 3anibar 1189 3biant1d 1389 drex1 1844 elrab3t 2958 bnd2 4256 opbrop 4797 opelresi 5015 funcnv3 5382 fnssresb 5434 dff1o5 5580 fneqeql2 5743 fnniniseg2 5757 rexsupp 5758 dffo3 5781 fmptco 5800 fnressn 5824 fconst4m 5858 riota2df 5975 eloprabga 6090 frecabcl 6543 mptelixpg 6879 exmidfodomrlemreseldju 7374 enq0breq 7619 genpassl 7707 genpassu 7708 elnnnn0 9408 peano2z 9478 znnsub 9494 znn0sub 9508 uzin 9751 nn01to3 9808 rpnegap 9878 negelrp 9879 xsubge0 10073 divelunit 10194 elfz5 10209 uzsplit 10284 elfzonelfzo 10431 infssuzex 10448 adddivflid 10507 divfl0 10511 swrdspsleq 11194 2shfti 11337 rexuz3 11496 clim2c 11790 fisumss 11898 bitsmod 12462 bitscmp 12464 bezoutlemmain 12514 nninfctlemfo 12556 dvdsfi 12756 pc2dvds 12848 1arith 12885 xpsfrnel 13372 xpsfrnel2 13374 ghmeqker 13803 lsslss 14339 zndvds 14607 znleval2 14612 eltg3 14725 lmbrf 14883 cnrest2 14904 cnptoprest 14907 cnptoprest2 14908 ismet2 15022 elbl2ps 15060 elbl2 15061 xblpnfps 15066 xblpnf 15067 bdxmet 15169 metcn 15182 cnbl0 15202 cnblcld 15203 mulc1cncf 15257 ellimc3apf 15328 pilem1 15447 wilthlem1 15648 lgsdilem 15700 lgsne0 15711 lgsabs1 15712 lgsquadlem1 15750 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |