Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrurd | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrurd | ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ibar 299 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbirand 438 3anibar 1150 drex1 1778 elrab3t 2867 bnd2 4135 opbrop 4666 opelresi 4878 funcnv3 5233 fnssresb 5283 dff1o5 5424 fneqeql2 5577 fnniniseg2 5591 rexsupp 5592 dffo3 5615 fmptco 5634 fnressn 5654 fconst4m 5688 riota2df 5801 eloprabga 5909 frecabcl 6347 mptelixpg 6680 exmidfodomrlemreseldju 7136 enq0breq 7357 genpassl 7445 genpassu 7446 elnnnn0 9134 peano2z 9204 znnsub 9219 znn0sub 9233 uzin 9472 nn01to3 9527 rpnegap 9594 negelrp 9595 xsubge0 9786 divelunit 9907 elfz5 9921 uzsplit 9995 elfzonelfzo 10133 adddivflid 10195 divfl0 10199 2shfti 10735 rexuz3 10894 clim2c 11185 fisumss 11293 infssuzex 11840 bezoutlemmain 11886 eltg3 12499 lmbrf 12657 cnrest2 12678 cnptoprest 12681 cnptoprest2 12682 ismet2 12796 elbl2ps 12834 elbl2 12835 xblpnfps 12840 xblpnf 12841 bdxmet 12943 metcn 12956 cnbl0 12976 cnblcld 12977 mulc1cncf 13018 ellimc3apf 13071 pilem1 13142 |
Copyright terms: Public domain | W3C validator |