Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr4g 222 bibi2i 226 equsalh 1714 eueq3dc 2900 sbcel12g 3060 sbceqg 3061 sbcnel12g 3062 reldisj 3460 r19.3rm 3497 eldifpr 3603 eldiftp 3622 rabxp 4641 elrng 4795 iss 4930 eliniseg 4974 fcnvres 5371 dffv3g 5482 funimass4 5537 fndmdif 5590 fneqeql 5593 funimass3 5601 elrnrexdmb 5625 dff4im 5631 fconst4m 5705 elunirn 5734 riota1 5816 riota2df 5818 f1ocnvfv3 5831 eqfnov 5948 caoftrn 6075 mpoxopovel 6209 rntpos 6225 ordgt0ge1 6403 iinerm 6573 erinxp 6575 qliftfun 6583 mapdm0 6629 elfi2 6937 fifo 6945 inl11 7030 ctssdccl 7076 isomnimap 7101 ismkvmap 7118 iswomnimap 7130 omniwomnimkv 7131 pr2nelem 7147 indpi 7283 genpdflem 7448 genpdisj 7464 genpassl 7465 genpassu 7466 ltnqpri 7535 ltpopr 7536 ltexprlemm 7541 ltexprlemdisj 7547 ltexprlemloc 7548 ltrennb 7795 letri3 7979 letr 7981 ltneg 8360 leneg 8363 reapltxor 8487 apsym 8504 suprnubex 8848 suprleubex 8849 elnnnn0 9157 zrevaddcl 9241 znnsub 9242 znn0sub 9256 prime 9290 eluz2 9472 eluz2b1 9539 nn01to3 9555 qrevaddcl 9582 xrletri3 9740 xrletr 9744 iccid 9861 elicopnf 9905 fzsplit2 9985 fzsn 10001 fzpr 10012 uzsplit 10027 fvinim0ffz 10176 lt2sqi 10542 le2sqi 10543 abs00ap 11004 iooinsup 11218 mertenslem2 11477 fprod2dlemstep 11563 gcddiv 11952 algcvgblem 11981 isprm3 12050 phisum 12172 eltg2b 12704 discld 12786 opnssneib 12806 restbasg 12818 ssidcn 12860 cnptoprest2 12890 lmss 12896 txrest 12926 txlm 12929 imasnopn 12949 bldisj 13051 xmeter 13086 bl2ioo 13192 limcdifap 13281 bj-sseq 13683 nnti 13884 pw1nct 13893 |
Copyright terms: Public domain | W3C validator |