![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1726 eueq3dc 2913 sbcel12g 3074 sbceqg 3075 sbcnel12g 3076 reldisj 3476 r19.3rm 3513 eldifpr 3621 eldiftp 3640 rabxp 4665 elrng 4820 iss 4955 eliniseg 5000 fcnvres 5401 dffv3g 5513 funimass4 5568 fndmdif 5623 fneqeql 5626 funimass3 5634 elrnrexdmb 5658 dff4im 5664 fconst4m 5738 elunirn 5769 riota1 5851 riota2df 5853 f1ocnvfv3 5866 eqfnov 5983 caoftrn 6110 mpoxopovel 6244 rntpos 6260 ordgt0ge1 6438 iinerm 6609 erinxp 6611 qliftfun 6619 mapdm0 6665 elfi2 6973 fifo 6981 inl11 7066 ctssdccl 7112 isomnimap 7137 ismkvmap 7154 iswomnimap 7166 omniwomnimkv 7167 pr2nelem 7192 indpi 7343 genpdflem 7508 genpdisj 7524 genpassl 7525 genpassu 7526 ltnqpri 7595 ltpopr 7596 ltexprlemm 7601 ltexprlemdisj 7607 ltexprlemloc 7608 ltrennb 7855 letri3 8040 letr 8042 ltneg 8421 leneg 8424 reapltxor 8548 apsym 8565 suprnubex 8912 suprleubex 8913 elnnnn0 9221 zrevaddcl 9305 znnsub 9306 znn0sub 9320 prime 9354 eluz2 9536 eluz2b1 9603 nn01to3 9619 qrevaddcl 9646 xrletri3 9806 xrletr 9810 iccid 9927 elicopnf 9971 fzsplit2 10052 fzsn 10068 fzpr 10079 uzsplit 10094 fvinim0ffz 10243 lt2sqi 10610 le2sqi 10611 abs00ap 11073 iooinsup 11287 mertenslem2 11546 fprod2dlemstep 11632 gcddiv 12022 algcvgblem 12051 isprm3 12120 phisum 12242 issubg 13038 resgrpisgrp 13060 eqgval 13087 ring1 13241 crngunit 13285 lssle0 13463 eltg2b 13593 discld 13675 opnssneib 13695 restbasg 13707 ssidcn 13749 cnptoprest2 13779 lmss 13785 txrest 13815 txlm 13818 imasnopn 13838 bldisj 13940 xmeter 13975 bl2ioo 14081 limcdifap 14170 bj-sseq 14583 nnti 14783 pw1nct 14791 |
Copyright terms: Public domain | W3C validator |