Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr4g 222 bibi2i 226 equsalh 1703 eueq3dc 2882 sbcel12g 3042 sbceqg 3043 sbcnel12g 3044 reldisj 3441 r19.3rm 3478 eldifpr 3583 eldiftp 3601 rabxp 4616 elrng 4770 iss 4905 eliniseg 4949 fcnvres 5346 dffv3g 5457 funimass4 5512 fndmdif 5565 fneqeql 5568 funimass3 5576 elrnrexdmb 5600 dff4im 5606 fconst4m 5680 elunirn 5707 riota1 5788 riota2df 5790 f1ocnvfv3 5803 eqfnov 5917 caoftrn 6047 mpoxopovel 6178 rntpos 6194 ordgt0ge1 6372 iinerm 6541 erinxp 6543 qliftfun 6551 mapdm0 6597 elfi2 6905 fifo 6913 inl11 6995 ctssdccl 7041 isomnimap 7059 ismkvmap 7076 iswomnimap 7088 omniwomnimkv 7089 pr2nelem 7105 indpi 7241 genpdflem 7406 genpdisj 7422 genpassl 7423 genpassu 7424 ltnqpri 7493 ltpopr 7494 ltexprlemm 7499 ltexprlemdisj 7505 ltexprlemloc 7506 ltrennb 7753 letri3 7937 letr 7939 ltneg 8316 leneg 8319 reapltxor 8443 apsym 8460 suprnubex 8803 suprleubex 8804 elnnnn0 9112 zrevaddcl 9196 znnsub 9197 znn0sub 9211 prime 9242 eluz2 9424 eluz2b1 9490 nn01to3 9504 qrevaddcl 9531 xrletri3 9687 xrletr 9690 iccid 9807 elicopnf 9851 fzsplit2 9930 fzsn 9946 fzpr 9957 uzsplit 9972 fvinim0ffz 10118 lt2sqi 10484 le2sqi 10485 abs00ap 10939 iooinsup 11151 mertenslem2 11410 fprod2dlemstep 11496 gcddiv 11874 algcvgblem 11897 isprm3 11966 eltg2b 12393 discld 12475 opnssneib 12495 restbasg 12507 ssidcn 12549 cnptoprest2 12579 lmss 12585 txrest 12615 txlm 12618 imasnopn 12638 bldisj 12740 xmeter 12775 bl2ioo 12881 limcdifap 12970 bj-sseq 13304 nnti 13505 pw1nct 13514 |
Copyright terms: Public domain | W3C validator |