![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1737 eueq3dc 2926 sbcel12g 3087 sbceqg 3088 sbcnel12g 3089 reldisj 3489 r19.3rm 3526 eldifpr 3634 eldiftp 3653 rabxp 4681 elrng 4836 iss 4971 eliniseg 5016 fcnvres 5418 dffv3g 5530 funimass4 5587 fndmdif 5642 fneqeql 5645 funimass3 5653 elrnrexdmb 5677 dff4im 5683 fconst4m 5757 elunirn 5788 riota1 5871 riota2df 5873 f1ocnvfv3 5886 eqfnov 6004 caoftrn 6133 mpoxopovel 6267 rntpos 6283 ordgt0ge1 6461 iinerm 6634 erinxp 6636 qliftfun 6644 mapdm0 6690 elfi2 7002 fifo 7010 inl11 7095 ctssdccl 7141 isomnimap 7166 ismkvmap 7183 iswomnimap 7195 omniwomnimkv 7196 pr2nelem 7221 indpi 7372 genpdflem 7537 genpdisj 7553 genpassl 7554 genpassu 7555 ltnqpri 7624 ltpopr 7625 ltexprlemm 7630 ltexprlemdisj 7636 ltexprlemloc 7637 ltrennb 7884 letri3 8069 letr 8071 ltneg 8450 leneg 8453 reapltxor 8577 apsym 8594 suprnubex 8941 suprleubex 8942 elnnnn0 9250 zrevaddcl 9334 znnsub 9335 znn0sub 9349 prime 9383 eluz2 9565 eluz2b1 9633 nn01to3 9649 qrevaddcl 9676 xrletri3 9836 xrletr 9840 iccid 9957 elicopnf 10001 fzsplit2 10082 fzsn 10098 fzpr 10109 uzsplit 10124 fvinim0ffz 10273 lt2sqi 10642 le2sqi 10643 abs00ap 11106 iooinsup 11320 mertenslem2 11579 fprod2dlemstep 11665 gcddiv 12055 algcvgblem 12084 isprm3 12153 phisum 12275 imasgrp2 13067 issubg 13129 resgrpisgrp 13151 eqgval 13179 imasrng 13327 ring1 13428 imasring 13431 crngunit 13478 lssle0 13705 lssats2 13747 eltg2b 14031 discld 14113 opnssneib 14133 restbasg 14145 ssidcn 14187 cnptoprest2 14217 lmss 14223 txrest 14253 txlm 14256 imasnopn 14276 bldisj 14378 xmeter 14413 bl2ioo 14519 limcdifap 14608 bj-sseq 15022 nnti 15223 pw1nct 15231 |
Copyright terms: Public domain | W3C validator |