| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
| 4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1386 3biant1d 1389 equsalh 1772 eueq3dc 2977 sbcel12g 3139 sbceqg 3140 sbcnel12g 3141 reldisj 3543 r19.3rm 3580 eldifpr 3693 eldiftp 3712 rabxp 4756 elrng 4913 iss 5051 eliniseg 5098 fcnvres 5511 dffv3g 5625 funimass4 5686 fndmdif 5742 fneqeql 5745 funimass3 5753 elrnrexdmb 5777 dff4im 5783 fconst4m 5863 elunirn 5896 riota1 5980 riota2df 5982 f1ocnvfv3 5996 eqfnov 6117 caoftrn 6257 mpoxopovel 6393 rntpos 6409 ordgt0ge1 6589 iinerm 6762 erinxp 6764 qliftfun 6772 mapdm0 6818 elfi2 7147 fifo 7155 inl11 7240 ctssdccl 7286 isomnimap 7312 ismkvmap 7329 iswomnimap 7341 omniwomnimkv 7342 pr2nelem 7372 indpi 7537 genpdflem 7702 genpdisj 7718 genpassl 7719 genpassu 7720 ltnqpri 7789 ltpopr 7790 ltexprlemm 7795 ltexprlemdisj 7801 ltexprlemloc 7802 ltrennb 8049 letri3 8235 letr 8237 ltneg 8617 leneg 8620 reapltxor 8744 apsym 8761 suprnubex 9108 suprleubex 9109 elnnnn0 9420 zrevaddcl 9505 znnsub 9506 znn0sub 9520 prime 9554 eluz2 9736 eluz2b1 9804 nn01to3 9820 qrevaddcl 9847 xrletri3 10008 xrletr 10012 iccid 10129 elicopnf 10173 fzsplit2 10254 fzsn 10270 fzpr 10281 uzsplit 10296 fvinim0ffz 10455 lt2sqi 10857 le2sqi 10858 ccatlcan 11258 ccatrcan 11259 abs00ap 11581 iooinsup 11796 mertenslem2 12055 fprod2dlemstep 12141 gcddiv 12548 algcvgblem 12579 isprm3 12648 dvdsfi 12769 imasmnd2 13493 imasgrp2 13655 issubg 13718 resgrpisgrp 13740 eqgval 13768 imasrng 13927 ring1 14030 imasring 14035 crngunit 14083 lssle0 14344 lssats2 14386 zndvds 14621 znleval 14625 znleval2 14626 eltg2b 14736 discld 14818 opnssneib 14838 restbasg 14850 ssidcn 14892 cnptoprest2 14922 lmss 14928 txrest 14958 txlm 14961 imasnopn 14981 bldisj 15083 xmeter 15118 bl2ioo 15232 limcdifap 15344 bj-sseq 16180 nnti 16385 2omap 16388 pw1nct 16398 |
| Copyright terms: Public domain | W3C validator |