| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
| 4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 equsalh 1740 eueq3dc 2938 sbcel12g 3099 sbceqg 3100 sbcnel12g 3101 reldisj 3503 r19.3rm 3540 eldifpr 3650 eldiftp 3669 rabxp 4701 elrng 4858 iss 4993 eliniseg 5040 fcnvres 5444 dffv3g 5557 funimass4 5614 fndmdif 5670 fneqeql 5673 funimass3 5681 elrnrexdmb 5705 dff4im 5711 fconst4m 5785 elunirn 5816 riota1 5899 riota2df 5901 f1ocnvfv3 5914 eqfnov 6033 caoftrn 6172 mpoxopovel 6308 rntpos 6324 ordgt0ge1 6502 iinerm 6675 erinxp 6677 qliftfun 6685 mapdm0 6731 elfi2 7047 fifo 7055 inl11 7140 ctssdccl 7186 isomnimap 7212 ismkvmap 7229 iswomnimap 7241 omniwomnimkv 7242 pr2nelem 7272 indpi 7428 genpdflem 7593 genpdisj 7609 genpassl 7610 genpassu 7611 ltnqpri 7680 ltpopr 7681 ltexprlemm 7686 ltexprlemdisj 7692 ltexprlemloc 7693 ltrennb 7940 letri3 8126 letr 8128 ltneg 8508 leneg 8511 reapltxor 8635 apsym 8652 suprnubex 8999 suprleubex 9000 elnnnn0 9311 zrevaddcl 9395 znnsub 9396 znn0sub 9410 prime 9444 eluz2 9626 eluz2b1 9694 nn01to3 9710 qrevaddcl 9737 xrletri3 9898 xrletr 9902 iccid 10019 elicopnf 10063 fzsplit2 10144 fzsn 10160 fzpr 10171 uzsplit 10186 fvinim0ffz 10336 lt2sqi 10738 le2sqi 10739 abs00ap 11246 iooinsup 11461 mertenslem2 11720 fprod2dlemstep 11806 gcddiv 12213 algcvgblem 12244 isprm3 12313 dvdsfi 12434 imasmnd2 13156 imasgrp2 13318 issubg 13381 resgrpisgrp 13403 eqgval 13431 imasrng 13590 ring1 13693 imasring 13698 crngunit 13745 lssle0 14006 lssats2 14048 zndvds 14283 znleval 14287 znleval2 14288 eltg2b 14376 discld 14458 opnssneib 14478 restbasg 14490 ssidcn 14532 cnptoprest2 14562 lmss 14568 txrest 14598 txlm 14601 imasnopn 14621 bldisj 14723 xmeter 14758 bl2ioo 14872 limcdifap 14984 bj-sseq 15524 nnti 15725 2omap 15728 pw1nct 15736 |
| Copyright terms: Public domain | W3C validator |