| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
| 4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1364 3biant1d 1367 equsalh 1750 eueq3dc 2948 sbcel12g 3109 sbceqg 3110 sbcnel12g 3111 reldisj 3513 r19.3rm 3550 eldifpr 3661 eldiftp 3680 rabxp 4716 elrng 4873 iss 5010 eliniseg 5057 fcnvres 5466 dffv3g 5579 funimass4 5636 fndmdif 5692 fneqeql 5695 funimass3 5703 elrnrexdmb 5727 dff4im 5733 fconst4m 5811 elunirn 5842 riota1 5925 riota2df 5927 f1ocnvfv3 5940 eqfnov 6059 caoftrn 6198 mpoxopovel 6334 rntpos 6350 ordgt0ge1 6528 iinerm 6701 erinxp 6703 qliftfun 6711 mapdm0 6757 elfi2 7081 fifo 7089 inl11 7174 ctssdccl 7220 isomnimap 7246 ismkvmap 7263 iswomnimap 7275 omniwomnimkv 7276 pr2nelem 7306 indpi 7462 genpdflem 7627 genpdisj 7643 genpassl 7644 genpassu 7645 ltnqpri 7714 ltpopr 7715 ltexprlemm 7720 ltexprlemdisj 7726 ltexprlemloc 7727 ltrennb 7974 letri3 8160 letr 8162 ltneg 8542 leneg 8545 reapltxor 8669 apsym 8686 suprnubex 9033 suprleubex 9034 elnnnn0 9345 zrevaddcl 9430 znnsub 9431 znn0sub 9445 prime 9479 eluz2 9661 eluz2b1 9729 nn01to3 9745 qrevaddcl 9772 xrletri3 9933 xrletr 9937 iccid 10054 elicopnf 10098 fzsplit2 10179 fzsn 10195 fzpr 10206 uzsplit 10221 fvinim0ffz 10377 lt2sqi 10779 le2sqi 10780 abs00ap 11417 iooinsup 11632 mertenslem2 11891 fprod2dlemstep 11977 gcddiv 12384 algcvgblem 12415 isprm3 12484 dvdsfi 12605 imasmnd2 13328 imasgrp2 13490 issubg 13553 resgrpisgrp 13575 eqgval 13603 imasrng 13762 ring1 13865 imasring 13870 crngunit 13917 lssle0 14178 lssats2 14220 zndvds 14455 znleval 14459 znleval2 14460 eltg2b 14570 discld 14652 opnssneib 14672 restbasg 14684 ssidcn 14726 cnptoprest2 14756 lmss 14762 txrest 14792 txlm 14795 imasnopn 14815 bldisj 14917 xmeter 14952 bl2ioo 15066 limcdifap 15178 bj-sseq 15802 nnti 16003 2omap 16006 pw1nct 16014 |
| Copyright terms: Public domain | W3C validator |