| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜃) |
| 4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr4g 223 bibi2i 227 3bior1fd 1366 3biant1d 1369 equsalh 1752 eueq3dc 2957 sbcel12g 3119 sbceqg 3120 sbcnel12g 3121 reldisj 3523 r19.3rm 3560 eldifpr 3673 eldiftp 3692 rabxp 4733 elrng 4890 iss 5027 eliniseg 5074 fcnvres 5485 dffv3g 5599 funimass4 5657 fndmdif 5713 fneqeql 5716 funimass3 5724 elrnrexdmb 5748 dff4im 5754 fconst4m 5832 elunirn 5863 riota1 5947 riota2df 5949 f1ocnvfv3 5963 eqfnov 6082 caoftrn 6221 mpoxopovel 6357 rntpos 6373 ordgt0ge1 6551 iinerm 6724 erinxp 6726 qliftfun 6734 mapdm0 6780 elfi2 7107 fifo 7115 inl11 7200 ctssdccl 7246 isomnimap 7272 ismkvmap 7289 iswomnimap 7301 omniwomnimkv 7302 pr2nelem 7332 indpi 7497 genpdflem 7662 genpdisj 7678 genpassl 7679 genpassu 7680 ltnqpri 7749 ltpopr 7750 ltexprlemm 7755 ltexprlemdisj 7761 ltexprlemloc 7762 ltrennb 8009 letri3 8195 letr 8197 ltneg 8577 leneg 8580 reapltxor 8704 apsym 8721 suprnubex 9068 suprleubex 9069 elnnnn0 9380 zrevaddcl 9465 znnsub 9466 znn0sub 9480 prime 9514 eluz2 9696 eluz2b1 9764 nn01to3 9780 qrevaddcl 9807 xrletri3 9968 xrletr 9972 iccid 10089 elicopnf 10133 fzsplit2 10214 fzsn 10230 fzpr 10241 uzsplit 10256 fvinim0ffz 10414 lt2sqi 10816 le2sqi 10817 ccatlcan 11216 ccatrcan 11217 abs00ap 11539 iooinsup 11754 mertenslem2 12013 fprod2dlemstep 12099 gcddiv 12506 algcvgblem 12537 isprm3 12606 dvdsfi 12727 imasmnd2 13451 imasgrp2 13613 issubg 13676 resgrpisgrp 13698 eqgval 13726 imasrng 13885 ring1 13988 imasring 13993 crngunit 14040 lssle0 14301 lssats2 14343 zndvds 14578 znleval 14582 znleval2 14583 eltg2b 14693 discld 14775 opnssneib 14795 restbasg 14807 ssidcn 14849 cnptoprest2 14879 lmss 14885 txrest 14915 txlm 14918 imasnopn 14938 bldisj 15040 xmeter 15075 bl2ioo 15189 limcdifap 15301 bj-sseq 16066 nnti 16267 2omap 16270 pw1nct 16280 |
| Copyright terms: Public domain | W3C validator |