Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4di.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr4di | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4di.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | bitrdi 195 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr4g 222 bibi2i 226 equsalh 1719 eueq3dc 2904 sbcel12g 3064 sbceqg 3065 sbcnel12g 3066 reldisj 3466 r19.3rm 3503 eldifpr 3610 eldiftp 3629 rabxp 4648 elrng 4802 iss 4937 eliniseg 4981 fcnvres 5381 dffv3g 5492 funimass4 5547 fndmdif 5601 fneqeql 5604 funimass3 5612 elrnrexdmb 5636 dff4im 5642 fconst4m 5716 elunirn 5745 riota1 5827 riota2df 5829 f1ocnvfv3 5842 eqfnov 5959 caoftrn 6086 mpoxopovel 6220 rntpos 6236 ordgt0ge1 6414 iinerm 6585 erinxp 6587 qliftfun 6595 mapdm0 6641 elfi2 6949 fifo 6957 inl11 7042 ctssdccl 7088 isomnimap 7113 ismkvmap 7130 iswomnimap 7142 omniwomnimkv 7143 pr2nelem 7168 indpi 7304 genpdflem 7469 genpdisj 7485 genpassl 7486 genpassu 7487 ltnqpri 7556 ltpopr 7557 ltexprlemm 7562 ltexprlemdisj 7568 ltexprlemloc 7569 ltrennb 7816 letri3 8000 letr 8002 ltneg 8381 leneg 8384 reapltxor 8508 apsym 8525 suprnubex 8869 suprleubex 8870 elnnnn0 9178 zrevaddcl 9262 znnsub 9263 znn0sub 9277 prime 9311 eluz2 9493 eluz2b1 9560 nn01to3 9576 qrevaddcl 9603 xrletri3 9761 xrletr 9765 iccid 9882 elicopnf 9926 fzsplit2 10006 fzsn 10022 fzpr 10033 uzsplit 10048 fvinim0ffz 10197 lt2sqi 10563 le2sqi 10564 abs00ap 11026 iooinsup 11240 mertenslem2 11499 fprod2dlemstep 11585 gcddiv 11974 algcvgblem 12003 isprm3 12072 phisum 12194 eltg2b 12848 discld 12930 opnssneib 12950 restbasg 12962 ssidcn 13004 cnptoprest2 13034 lmss 13040 txrest 13070 txlm 13073 imasnopn 13093 bldisj 13195 xmeter 13230 bl2ioo 13336 limcdifap 13425 bj-sseq 13827 nnti 14027 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |