ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantrud GIF version

Theorem biantrud 304
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.)
Hypothesis
Ref Expression
biantrud.1 (𝜑𝜓)
Assertion
Ref Expression
biantrud (𝜑 → (𝜒 ↔ (𝜒𝜓)))

Proof of Theorem biantrud
StepHypRef Expression
1 biantrud.1 . 2 (𝜑𝜓)
2 iba 300 . 2 (𝜓 → (𝜒 ↔ (𝜒𝜓)))
31, 2syl 14 1 (𝜑 → (𝜒 ↔ (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mpbiran2d  442  posng  4768  elrnmpt1  4951  fliftf  5896  elxp7  6286  eroveu  6743  sbthlemi5  7096  sbthlemi6  7097  elfi2  7107  reapltxor  8704  divap0b  8798  nnle1eq1  9102  nn0le0eq0  9365  nn0lt10b  9495  ioopos  10114  xrmaxiflemcom  11726  fz1f1o  11852  nndivdvds  12273  dvdsmultr2  12310  bitsmod  12433  pcmpt  12832  pcmpt2  12833  resrhm2b  14178  lssle0  14301  discld  14775  cncnpi  14867  cnptoprest2  14879  lmss  14885  txcn  14914  isxmet2d  14987  xblss2  15044  bdxmet  15140  xmetxp  15146  cncfcdm  15221  lgsneg  15668  lgsdilem  15671  2lgslem1a  15732
  Copyright terms: Public domain W3C validator