Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrud | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 298 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbiran2d 439 posng 4676 elrnmpt1 4855 fliftf 5767 elxp7 6138 eroveu 6592 sbthlemi5 6926 sbthlemi6 6927 elfi2 6937 reapltxor 8487 divap0b 8579 nnle1eq1 8881 nn0le0eq0 9142 nn0lt10b 9271 ioopos 9886 xrmaxiflemcom 11190 fz1f1o 11316 nndivdvds 11736 dvdsmultr2 11773 pcmpt 12273 pcmpt2 12274 discld 12786 cncnpi 12878 cnptoprest2 12890 lmss 12896 txcn 12925 isxmet2d 12998 xblss2 13055 bdxmet 13151 xmetxp 13157 cncffvrn 13219 lgsneg 13575 lgsdilem 13578 |
Copyright terms: Public domain | W3C validator |