| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4768 elrnmpt1 4951 fliftf 5896 elxp7 6286 eroveu 6743 sbthlemi5 7096 sbthlemi6 7097 elfi2 7107 reapltxor 8704 divap0b 8798 nnle1eq1 9102 nn0le0eq0 9365 nn0lt10b 9495 ioopos 10114 xrmaxiflemcom 11726 fz1f1o 11852 nndivdvds 12273 dvdsmultr2 12310 bitsmod 12433 pcmpt 12832 pcmpt2 12833 resrhm2b 14178 lssle0 14301 discld 14775 cncnpi 14867 cnptoprest2 14879 lmss 14885 txcn 14914 isxmet2d 14987 xblss2 15044 bdxmet 15140 xmetxp 15146 cncfcdm 15221 lgsneg 15668 lgsdilem 15671 2lgslem1a 15732 |
| Copyright terms: Public domain | W3C validator |