| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4736 elrnmpt1 4918 fliftf 5849 elxp7 6237 eroveu 6694 sbthlemi5 7036 sbthlemi6 7037 elfi2 7047 reapltxor 8633 divap0b 8727 nnle1eq1 9031 nn0le0eq0 9294 nn0lt10b 9423 ioopos 10042 xrmaxiflemcom 11431 fz1f1o 11557 nndivdvds 11978 dvdsmultr2 12015 bitsmod 12138 pcmpt 12537 pcmpt2 12538 resrhm2b 13881 lssle0 14004 discld 14456 cncnpi 14548 cnptoprest2 14560 lmss 14566 txcn 14595 isxmet2d 14668 xblss2 14725 bdxmet 14821 xmetxp 14827 cncfcdm 14902 lgsneg 15349 lgsdilem 15352 2lgslem1a 15413 |
| Copyright terms: Public domain | W3C validator |