![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrud | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran2d 442 posng 4731 elrnmpt1 4913 fliftf 5842 elxp7 6223 eroveu 6680 sbthlemi5 7020 sbthlemi6 7021 elfi2 7031 reapltxor 8608 divap0b 8702 nnle1eq1 9006 nn0le0eq0 9268 nn0lt10b 9397 ioopos 10016 xrmaxiflemcom 11392 fz1f1o 11518 nndivdvds 11939 dvdsmultr2 11976 pcmpt 12481 pcmpt2 12482 resrhm2b 13745 lssle0 13868 discld 14304 cncnpi 14396 cnptoprest2 14408 lmss 14414 txcn 14443 isxmet2d 14516 xblss2 14573 bdxmet 14669 xmetxp 14675 cncfcdm 14737 lgsneg 15140 lgsdilem 15143 |
Copyright terms: Public domain | W3C validator |