| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4791 elrnmpt1 4975 fliftf 5929 elxp7 6322 eroveu 6781 sbthlemi5 7136 sbthlemi6 7137 elfi2 7147 reapltxor 8744 divap0b 8838 nnle1eq1 9142 nn0le0eq0 9405 nn0lt10b 9535 ioopos 10154 xrmaxiflemcom 11768 fz1f1o 11894 nndivdvds 12315 dvdsmultr2 12352 bitsmod 12475 pcmpt 12874 pcmpt2 12875 resrhm2b 14221 lssle0 14344 discld 14818 cncnpi 14910 cnptoprest2 14922 lmss 14928 txcn 14957 isxmet2d 15030 xblss2 15087 bdxmet 15183 xmetxp 15189 cncfcdm 15264 lgsneg 15711 lgsdilem 15714 2lgslem1a 15775 |
| Copyright terms: Public domain | W3C validator |