| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4736 elrnmpt1 4918 fliftf 5849 elxp7 6237 eroveu 6694 sbthlemi5 7036 sbthlemi6 7037 elfi2 7047 reapltxor 8635 divap0b 8729 nnle1eq1 9033 nn0le0eq0 9296 nn0lt10b 9425 ioopos 10044 xrmaxiflemcom 11433 fz1f1o 11559 nndivdvds 11980 dvdsmultr2 12017 bitsmod 12140 pcmpt 12539 pcmpt2 12540 resrhm2b 13883 lssle0 14006 discld 14458 cncnpi 14550 cnptoprest2 14562 lmss 14568 txcn 14597 isxmet2d 14670 xblss2 14727 bdxmet 14823 xmetxp 14829 cncfcdm 14904 lgsneg 15351 lgsdilem 15354 2lgslem1a 15415 |
| Copyright terms: Public domain | W3C validator |