![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrud | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran2d 442 posng 4700 elrnmpt1 4880 fliftf 5802 elxp7 6173 eroveu 6628 sbthlemi5 6962 sbthlemi6 6963 elfi2 6973 reapltxor 8548 divap0b 8642 nnle1eq1 8945 nn0le0eq0 9206 nn0lt10b 9335 ioopos 9952 xrmaxiflemcom 11259 fz1f1o 11385 nndivdvds 11805 dvdsmultr2 11842 pcmpt 12343 pcmpt2 12344 lssle0 13463 discld 13721 cncnpi 13813 cnptoprest2 13825 lmss 13831 txcn 13860 isxmet2d 13933 xblss2 13990 bdxmet 14086 xmetxp 14092 cncfcdm 14154 lgsneg 14510 lgsdilem 14513 |
Copyright terms: Public domain | W3C validator |