| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 300 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4751 elrnmpt1 4934 fliftf 5875 elxp7 6263 eroveu 6720 sbthlemi5 7070 sbthlemi6 7071 elfi2 7081 reapltxor 8669 divap0b 8763 nnle1eq1 9067 nn0le0eq0 9330 nn0lt10b 9460 ioopos 10079 xrmaxiflemcom 11604 fz1f1o 11730 nndivdvds 12151 dvdsmultr2 12188 bitsmod 12311 pcmpt 12710 pcmpt2 12711 resrhm2b 14055 lssle0 14178 discld 14652 cncnpi 14744 cnptoprest2 14756 lmss 14762 txcn 14791 isxmet2d 14864 xblss2 14921 bdxmet 15017 xmetxp 15023 cncfcdm 15098 lgsneg 15545 lgsdilem 15548 2lgslem1a 15609 |
| Copyright terms: Public domain | W3C validator |