Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrud | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 298 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbiran2d 440 posng 4683 elrnmpt1 4862 fliftf 5778 elxp7 6149 eroveu 6604 sbthlemi5 6938 sbthlemi6 6939 elfi2 6949 reapltxor 8508 divap0b 8600 nnle1eq1 8902 nn0le0eq0 9163 nn0lt10b 9292 ioopos 9907 xrmaxiflemcom 11212 fz1f1o 11338 nndivdvds 11758 dvdsmultr2 11795 pcmpt 12295 pcmpt2 12296 discld 12930 cncnpi 13022 cnptoprest2 13034 lmss 13040 txcn 13069 isxmet2d 13142 xblss2 13199 bdxmet 13295 xmetxp 13301 cncffvrn 13363 lgsneg 13719 lgsdilem 13722 |
Copyright terms: Public domain | W3C validator |