| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anrot 986 3anan12 993 anandi3 994 3biant1d 1367 3exdistr 1940 r3al 2552 ceqsex2 2818 ceqsex3v 2820 ceqsex4v 2821 ceqsex6v 2822 ceqsex8v 2823 eldifpr 3670 rexdifpr 3671 trel3 4166 sowlin 4385 dff1o4 5552 mpoxopovel 6350 dfsmo2 6396 ecopovtrn 6742 ecopovtrng 6745 elixp2 6812 elixp 6815 mptelixpg 6844 eqinfti 7148 distrnqg 7535 recmulnqg 7539 ltexnqq 7556 enq0tr 7582 distrnq0 7607 genpdflem 7655 distrlem1prl 7730 distrlem1pru 7731 divmulasscomap 8804 muldivdirap 8815 divmuldivap 8820 prime 9507 eluz2 9689 raluz2 9735 elixx1 10054 elixx3g 10058 elioo2 10078 elioo5 10090 elicc4 10097 iccneg 10146 icoshft 10147 elfz1 10170 elfz 10171 elfz2 10172 elfzm11 10248 elfz2nn0 10269 elfzo2 10307 elfzo3 10321 lbfzo0 10342 fzind2 10405 zmodid2 10534 swrdccatin1 11216 swrdccat 11226 redivap 11300 imdivap 11307 maxleast 11639 cosmul 12171 bitsval 12369 bitsmod 12382 bitscmp 12384 dfgcd2 12450 lcmneg 12511 coprmgcdb 12525 divgcdcoprmex 12539 cncongr1 12540 cncongr2 12541 difsqpwdvds 12776 elgz 12809 xpsfrnel 13291 xpsfrnel2 13293 mgmsscl 13308 ismhm 13408 mhmpropd 13413 issubm 13419 issubg 13624 eqglact 13676 eqgid 13677 ecqusaddd 13689 ecqusaddcl 13690 isrng 13811 issrg 13842 srglmhm 13870 srgrmhm 13871 isring 13877 ringlghm 13938 dfrhm2 14031 issubrng 14076 issubrg3 14124 islmod 14168 islssm 14234 islssmg 14235 lsspropdg 14308 qusmulrng 14409 lmbrf 14802 uptx 14861 txcn 14862 xmetec 15024 bl2ioo 15137 lgsmodeq 15637 lgsmulsqcoprm 15638 findset 16080 |
| Copyright terms: Public domain | W3C validator |