![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anrot 985 3anan12 992 anandi3 993 3exdistr 1927 r3al 2538 ceqsex2 2801 ceqsex3v 2803 ceqsex4v 2804 ceqsex6v 2805 ceqsex8v 2806 eldifpr 3646 rexdifpr 3647 trel3 4136 sowlin 4352 dff1o4 5509 mpoxopovel 6296 dfsmo2 6342 ecopovtrn 6688 ecopovtrng 6691 elixp2 6758 elixp 6761 mptelixpg 6790 eqinfti 7081 distrnqg 7449 recmulnqg 7453 ltexnqq 7470 enq0tr 7496 distrnq0 7521 genpdflem 7569 distrlem1prl 7644 distrlem1pru 7645 divmulasscomap 8717 muldivdirap 8728 divmuldivap 8733 prime 9419 eluz2 9601 raluz2 9647 elixx1 9966 elixx3g 9970 elioo2 9990 elioo5 10002 elicc4 10009 iccneg 10058 icoshft 10059 elfz1 10082 elfz 10083 elfz2 10084 elfzm11 10160 elfz2nn0 10181 elfzo2 10219 elfzo3 10233 lbfzo0 10251 fzind2 10309 zmodid2 10426 redivap 11021 imdivap 11028 maxleast 11360 cosmul 11891 dfgcd2 12154 lcmneg 12215 coprmgcdb 12229 divgcdcoprmex 12243 cncongr1 12244 cncongr2 12245 difsqpwdvds 12479 elgz 12512 xpsfrnel 12930 xpsfrnel2 12932 mgmsscl 12947 ismhm 13036 mhmpropd 13041 issubm 13047 issubg 13246 eqglact 13298 eqgid 13299 ecqusaddd 13311 ecqusaddcl 13312 isrng 13433 issrg 13464 srglmhm 13492 srgrmhm 13493 isring 13499 ringlghm 13560 dfrhm2 13653 issubrng 13698 issubrg3 13746 islmod 13790 islssm 13856 islssmg 13857 lsspropdg 13930 qusmulrng 14031 lmbrf 14394 uptx 14453 txcn 14454 xmetec 14616 bl2ioo 14729 lgsmodeq 15202 lgsmulsqcoprm 15203 findset 15507 |
Copyright terms: Public domain | W3C validator |