| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anrot 1007 3anan12 1014 anandi3 1015 3biant1d 1389 3exdistr 1962 r3al 2574 ceqsex2 2841 ceqsex3v 2843 ceqsex4v 2844 ceqsex6v 2845 ceqsex8v 2846 eldifpr 3693 rexdifpr 3694 trel3 4190 sowlin 4411 dff1o4 5580 mpoxopovel 6387 dfsmo2 6433 ecopovtrn 6779 ecopovtrng 6782 elixp2 6849 elixp 6852 mptelixpg 6881 eqinfti 7187 distrnqg 7574 recmulnqg 7578 ltexnqq 7595 enq0tr 7621 distrnq0 7646 genpdflem 7694 distrlem1prl 7769 distrlem1pru 7770 divmulasscomap 8843 muldivdirap 8854 divmuldivap 8859 prime 9546 eluz2 9728 raluz2 9774 elixx1 10093 elixx3g 10097 elioo2 10117 elioo5 10129 elicc4 10136 iccneg 10185 icoshft 10186 elfz1 10209 elfz 10210 elfz2 10211 elfzm11 10287 elfz2nn0 10308 elfzo2 10346 elfzo3 10360 lbfzo0 10381 fzind2 10445 zmodid2 10574 swrdccatin1 11257 swrdccat 11267 redivap 11385 imdivap 11392 maxleast 11724 cosmul 12256 bitsval 12454 bitsmod 12467 bitscmp 12469 dfgcd2 12535 lcmneg 12596 coprmgcdb 12610 divgcdcoprmex 12624 cncongr1 12625 cncongr2 12626 difsqpwdvds 12861 elgz 12894 xpsfrnel 13377 xpsfrnel2 13379 mgmsscl 13394 ismhm 13494 mhmpropd 13499 issubm 13505 issubg 13710 eqglact 13762 eqgid 13763 ecqusaddd 13775 ecqusaddcl 13776 isrng 13897 issrg 13928 srglmhm 13956 srgrmhm 13957 isring 13963 ringlghm 14024 dfrhm2 14118 issubrng 14163 issubrg3 14211 islmod 14255 islssm 14321 islssmg 14322 lsspropdg 14395 qusmulrng 14496 lmbrf 14889 uptx 14948 txcn 14949 xmetec 15111 bl2ioo 15224 lgsmodeq 15724 lgsmulsqcoprm 15725 uspgredg2v 16019 wksfval 16035 wlkeq 16065 findset 16308 |
| Copyright terms: Public domain | W3C validator |