| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anrot 986 3anan12 993 anandi3 994 3biant1d 1367 3exdistr 1939 r3al 2550 ceqsex2 2813 ceqsex3v 2815 ceqsex4v 2816 ceqsex6v 2817 ceqsex8v 2818 eldifpr 3660 rexdifpr 3661 trel3 4151 sowlin 4368 dff1o4 5532 mpoxopovel 6329 dfsmo2 6375 ecopovtrn 6721 ecopovtrng 6724 elixp2 6791 elixp 6794 mptelixpg 6823 eqinfti 7124 distrnqg 7502 recmulnqg 7506 ltexnqq 7523 enq0tr 7549 distrnq0 7574 genpdflem 7622 distrlem1prl 7697 distrlem1pru 7698 divmulasscomap 8771 muldivdirap 8782 divmuldivap 8787 prime 9474 eluz2 9656 raluz2 9702 elixx1 10021 elixx3g 10025 elioo2 10045 elioo5 10057 elicc4 10064 iccneg 10113 icoshft 10114 elfz1 10137 elfz 10138 elfz2 10139 elfzm11 10215 elfz2nn0 10236 elfzo2 10274 elfzo3 10288 lbfzo0 10307 fzind2 10370 zmodid2 10499 redivap 11218 imdivap 11225 maxleast 11557 cosmul 12089 bitsval 12287 bitsmod 12300 bitscmp 12302 dfgcd2 12368 lcmneg 12429 coprmgcdb 12443 divgcdcoprmex 12457 cncongr1 12458 cncongr2 12459 difsqpwdvds 12694 elgz 12727 xpsfrnel 13209 xpsfrnel2 13211 mgmsscl 13226 ismhm 13326 mhmpropd 13331 issubm 13337 issubg 13542 eqglact 13594 eqgid 13595 ecqusaddd 13607 ecqusaddcl 13608 isrng 13729 issrg 13760 srglmhm 13788 srgrmhm 13789 isring 13795 ringlghm 13856 dfrhm2 13949 issubrng 13994 issubrg3 14042 islmod 14086 islssm 14152 islssmg 14153 lsspropdg 14226 qusmulrng 14327 lmbrf 14720 uptx 14779 txcn 14780 xmetec 14942 bl2ioo 15055 lgsmodeq 15555 lgsmulsqcoprm 15556 findset 15918 |
| Copyright terms: Public domain | W3C validator |