| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anrot 985 3anan12 992 anandi3 993 3exdistr 1930 r3al 2541 ceqsex2 2804 ceqsex3v 2806 ceqsex4v 2807 ceqsex6v 2808 ceqsex8v 2809 eldifpr 3649 rexdifpr 3650 trel3 4139 sowlin 4355 dff1o4 5512 mpoxopovel 6299 dfsmo2 6345 ecopovtrn 6691 ecopovtrng 6694 elixp2 6761 elixp 6764 mptelixpg 6793 eqinfti 7086 distrnqg 7454 recmulnqg 7458 ltexnqq 7475 enq0tr 7501 distrnq0 7526 genpdflem 7574 distrlem1prl 7649 distrlem1pru 7650 divmulasscomap 8723 muldivdirap 8734 divmuldivap 8739 prime 9425 eluz2 9607 raluz2 9653 elixx1 9972 elixx3g 9976 elioo2 9996 elioo5 10008 elicc4 10015 iccneg 10064 icoshft 10065 elfz1 10088 elfz 10089 elfz2 10090 elfzm11 10166 elfz2nn0 10187 elfzo2 10225 elfzo3 10239 lbfzo0 10257 fzind2 10315 zmodid2 10444 redivap 11039 imdivap 11046 maxleast 11378 cosmul 11910 bitsval 12108 dfgcd2 12181 lcmneg 12242 coprmgcdb 12256 divgcdcoprmex 12270 cncongr1 12271 cncongr2 12272 difsqpwdvds 12507 elgz 12540 xpsfrnel 12987 xpsfrnel2 12989 mgmsscl 13004 ismhm 13093 mhmpropd 13098 issubm 13104 issubg 13303 eqglact 13355 eqgid 13356 ecqusaddd 13368 ecqusaddcl 13369 isrng 13490 issrg 13521 srglmhm 13549 srgrmhm 13550 isring 13556 ringlghm 13617 dfrhm2 13710 issubrng 13755 issubrg3 13803 islmod 13847 islssm 13913 islssmg 13914 lsspropdg 13987 qusmulrng 14088 lmbrf 14451 uptx 14510 txcn 14511 xmetec 14673 bl2ioo 14786 lgsmodeq 15286 lgsmulsqcoprm 15287 findset 15591 |
| Copyright terms: Public domain | W3C validator |