| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anrot 986 3anan12 993 anandi3 994 3biant1d 1367 3exdistr 1939 r3al 2550 ceqsex2 2813 ceqsex3v 2815 ceqsex4v 2816 ceqsex6v 2817 ceqsex8v 2818 eldifpr 3660 rexdifpr 3661 trel3 4150 sowlin 4367 dff1o4 5530 mpoxopovel 6327 dfsmo2 6373 ecopovtrn 6719 ecopovtrng 6722 elixp2 6789 elixp 6792 mptelixpg 6821 eqinfti 7122 distrnqg 7500 recmulnqg 7504 ltexnqq 7521 enq0tr 7547 distrnq0 7572 genpdflem 7620 distrlem1prl 7695 distrlem1pru 7696 divmulasscomap 8769 muldivdirap 8780 divmuldivap 8785 prime 9472 eluz2 9654 raluz2 9700 elixx1 10019 elixx3g 10023 elioo2 10043 elioo5 10055 elicc4 10062 iccneg 10111 icoshft 10112 elfz1 10135 elfz 10136 elfz2 10137 elfzm11 10213 elfz2nn0 10234 elfzo2 10272 elfzo3 10286 lbfzo0 10305 fzind2 10368 zmodid2 10497 redivap 11185 imdivap 11192 maxleast 11524 cosmul 12056 bitsval 12254 bitsmod 12267 bitscmp 12269 dfgcd2 12335 lcmneg 12396 coprmgcdb 12410 divgcdcoprmex 12424 cncongr1 12425 cncongr2 12426 difsqpwdvds 12661 elgz 12694 xpsfrnel 13176 xpsfrnel2 13178 mgmsscl 13193 ismhm 13293 mhmpropd 13298 issubm 13304 issubg 13509 eqglact 13561 eqgid 13562 ecqusaddd 13574 ecqusaddcl 13575 isrng 13696 issrg 13727 srglmhm 13755 srgrmhm 13756 isring 13762 ringlghm 13823 dfrhm2 13916 issubrng 13961 issubrg3 14009 islmod 14053 islssm 14119 islssmg 14120 lsspropdg 14193 qusmulrng 14294 lmbrf 14687 uptx 14746 txcn 14747 xmetec 14909 bl2ioo 15022 lgsmodeq 15522 lgsmulsqcoprm 15523 findset 15881 |
| Copyright terms: Public domain | W3C validator |