| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | GIF version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anrot 985 3anan12 992 anandi3 993 3exdistr 1930 r3al 2541 ceqsex2 2804 ceqsex3v 2806 ceqsex4v 2807 ceqsex6v 2808 ceqsex8v 2809 eldifpr 3650 rexdifpr 3651 trel3 4140 sowlin 4356 dff1o4 5515 mpoxopovel 6308 dfsmo2 6354 ecopovtrn 6700 ecopovtrng 6703 elixp2 6770 elixp 6773 mptelixpg 6802 eqinfti 7095 distrnqg 7471 recmulnqg 7475 ltexnqq 7492 enq0tr 7518 distrnq0 7543 genpdflem 7591 distrlem1prl 7666 distrlem1pru 7667 divmulasscomap 8740 muldivdirap 8751 divmuldivap 8756 prime 9442 eluz2 9624 raluz2 9670 elixx1 9989 elixx3g 9993 elioo2 10013 elioo5 10025 elicc4 10032 iccneg 10081 icoshft 10082 elfz1 10105 elfz 10106 elfz2 10107 elfzm11 10183 elfz2nn0 10204 elfzo2 10242 elfzo3 10256 lbfzo0 10274 fzind2 10332 zmodid2 10461 redivap 11056 imdivap 11063 maxleast 11395 cosmul 11927 bitsval 12125 bitsmod 12138 bitscmp 12140 dfgcd2 12206 lcmneg 12267 coprmgcdb 12281 divgcdcoprmex 12295 cncongr1 12296 cncongr2 12297 difsqpwdvds 12532 elgz 12565 xpsfrnel 13046 xpsfrnel2 13048 mgmsscl 13063 ismhm 13163 mhmpropd 13168 issubm 13174 issubg 13379 eqglact 13431 eqgid 13432 ecqusaddd 13444 ecqusaddcl 13445 isrng 13566 issrg 13597 srglmhm 13625 srgrmhm 13626 isring 13632 ringlghm 13693 dfrhm2 13786 issubrng 13831 issubrg3 13879 islmod 13923 islssm 13989 islssmg 13990 lsspropdg 14063 qusmulrng 14164 lmbrf 14535 uptx 14594 txcn 14595 xmetec 14757 bl2ioo 14870 lgsmodeq 15370 lgsmulsqcoprm 15371 findset 15675 |
| Copyright terms: Public domain | W3C validator |