Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anass 399 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitri 183 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3anrot 978 3anan12 985 anandi3 986 3exdistr 1908 r3al 2514 ceqsex2 2770 ceqsex3v 2772 ceqsex4v 2773 ceqsex6v 2774 ceqsex8v 2775 eldifpr 3610 rexdifpr 3611 trel3 4095 sowlin 4305 dff1o4 5450 mpoxopovel 6220 dfsmo2 6266 ecopovtrn 6610 ecopovtrng 6613 elixp2 6680 elixp 6683 mptelixpg 6712 eqinfti 6997 distrnqg 7349 recmulnqg 7353 ltexnqq 7370 enq0tr 7396 distrnq0 7421 genpdflem 7469 distrlem1prl 7544 distrlem1pru 7545 divmulasscomap 8613 muldivdirap 8624 divmuldivap 8629 prime 9311 eluz2 9493 raluz2 9538 elixx1 9854 elixx3g 9858 elioo2 9878 elioo5 9890 elicc4 9897 iccneg 9946 icoshft 9947 elfz1 9970 elfz 9971 elfz2 9972 elfzm11 10047 elfz2nn0 10068 elfzo2 10106 elfzo3 10119 lbfzo0 10137 fzind2 10195 zmodid2 10308 redivap 10838 imdivap 10845 maxleast 11177 cosmul 11708 dfgcd2 11969 lcmneg 12028 coprmgcdb 12042 divgcdcoprmex 12056 cncongr1 12057 cncongr2 12058 difsqpwdvds 12291 elgz 12323 mgmsscl 12615 ismhm 12685 mhmpropd 12689 issubm 12695 lmbrf 13009 uptx 13068 txcn 13069 xmetec 13231 bl2ioo 13336 lgsmodeq 13740 lgsmulsqcoprm 13741 findset 13980 |
Copyright terms: Public domain | W3C validator |