![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anrot 985 3anan12 992 anandi3 993 3exdistr 1927 r3al 2538 ceqsex2 2800 ceqsex3v 2802 ceqsex4v 2803 ceqsex6v 2804 ceqsex8v 2805 eldifpr 3645 rexdifpr 3646 trel3 4135 sowlin 4351 dff1o4 5508 mpoxopovel 6294 dfsmo2 6340 ecopovtrn 6686 ecopovtrng 6689 elixp2 6756 elixp 6759 mptelixpg 6788 eqinfti 7079 distrnqg 7447 recmulnqg 7451 ltexnqq 7468 enq0tr 7494 distrnq0 7519 genpdflem 7567 distrlem1prl 7642 distrlem1pru 7643 divmulasscomap 8715 muldivdirap 8726 divmuldivap 8731 prime 9416 eluz2 9598 raluz2 9644 elixx1 9963 elixx3g 9967 elioo2 9987 elioo5 9999 elicc4 10006 iccneg 10055 icoshft 10056 elfz1 10079 elfz 10080 elfz2 10081 elfzm11 10157 elfz2nn0 10178 elfzo2 10216 elfzo3 10230 lbfzo0 10248 fzind2 10306 zmodid2 10423 redivap 11018 imdivap 11025 maxleast 11357 cosmul 11888 dfgcd2 12151 lcmneg 12212 coprmgcdb 12226 divgcdcoprmex 12240 cncongr1 12241 cncongr2 12242 difsqpwdvds 12476 elgz 12509 xpsfrnel 12927 xpsfrnel2 12929 mgmsscl 12944 ismhm 13033 mhmpropd 13038 issubm 13044 issubg 13243 eqglact 13295 eqgid 13296 ecqusaddd 13308 ecqusaddcl 13309 isrng 13430 issrg 13461 srglmhm 13489 srgrmhm 13490 isring 13496 ringlghm 13557 dfrhm2 13650 issubrng 13695 issubrg3 13743 islmod 13787 islssm 13853 islssmg 13854 lsspropdg 13927 qusmulrng 14028 lmbrf 14383 uptx 14442 txcn 14443 xmetec 14605 bl2ioo 14710 lgsmodeq 15161 lgsmulsqcoprm 15162 findset 15437 |
Copyright terms: Public domain | W3C validator |