Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anass | GIF version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anass 399 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitri 183 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3anrot 973 3anan12 980 anandi3 981 3exdistr 1903 r3al 2510 ceqsex2 2766 ceqsex3v 2768 ceqsex4v 2769 ceqsex6v 2770 ceqsex8v 2771 eldifpr 3603 rexdifpr 3604 trel3 4088 sowlin 4298 dff1o4 5440 mpoxopovel 6209 dfsmo2 6255 ecopovtrn 6598 ecopovtrng 6601 elixp2 6668 elixp 6671 mptelixpg 6700 eqinfti 6985 distrnqg 7328 recmulnqg 7332 ltexnqq 7349 enq0tr 7375 distrnq0 7400 genpdflem 7448 distrlem1prl 7523 distrlem1pru 7524 divmulasscomap 8592 muldivdirap 8603 divmuldivap 8608 prime 9290 eluz2 9472 raluz2 9517 elixx1 9833 elixx3g 9837 elioo2 9857 elioo5 9869 elicc4 9876 iccneg 9925 icoshft 9926 elfz1 9949 elfz 9950 elfz2 9951 elfzm11 10026 elfz2nn0 10047 elfzo2 10085 elfzo3 10098 lbfzo0 10116 fzind2 10174 zmodid2 10287 redivap 10816 imdivap 10823 maxleast 11155 cosmul 11686 dfgcd2 11947 lcmneg 12006 coprmgcdb 12020 divgcdcoprmex 12034 cncongr1 12035 cncongr2 12036 difsqpwdvds 12269 elgz 12301 mgmsscl 12592 lmbrf 12855 uptx 12914 txcn 12915 xmetec 13077 bl2ioo 13182 lgsmodeq 13586 lgsmulsqcoprm 13587 findset 13827 |
Copyright terms: Public domain | W3C validator |