| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bior1fd | GIF version | ||
| Description: A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf 745. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
| Ref | Expression |
|---|---|
| 3biorfd.1 | ⊢ (𝜑 → ¬ 𝜃) |
| Ref | Expression |
|---|---|
| 3bior1fd | ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biorfd.1 | . . 3 ⊢ (𝜑 → ¬ 𝜃) | |
| 2 | biorf 745 | . . 3 ⊢ (¬ 𝜃 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ (𝜒 ∨ 𝜓)))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ (𝜒 ∨ 𝜓)))) |
| 4 | 3orass 983 | . 2 ⊢ ((𝜃 ∨ 𝜒 ∨ 𝜓) ↔ (𝜃 ∨ (𝜒 ∨ 𝜓))) | |
| 5 | 3, 4 | bitr4di 198 | 1 ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: 3bior1fand 1364 3bior2fd 1365 |
| Copyright terms: Public domain | W3C validator |