| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orass | GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 982 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 769 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 |
| This theorem is referenced by: 3orrot 987 3orcomb 990 3mix1 1169 3bior1fd 1364 sotritric 4371 sotritrieq 4372 ordtriexmid 4569 ontriexmidim 4570 acexmidlemcase 5939 nntri3or 6579 nntri2 6580 exmidontriimlem1 7333 elnnz 9382 elznn0 9387 elznn 9388 zapne 9447 nn01to3 9738 elxr 9898 bezoutlemmain 12319 nninfctlemfo 12361 lgsdilem 15504 gausslemma2dlem4 15541 |
| Copyright terms: Public domain | W3C validator |