ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass GIF version

Theorem 3orass 1005
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 1003 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 orass 772 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2bitri 184 1 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713  w3o 1001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-3or 1003
This theorem is referenced by:  3orrot  1008  3orcomb  1011  3mix1  1190  3bior1fd  1386  sotritric  4415  sotritrieq  4416  ordtriexmid  4613  ontriexmidim  4614  acexmidlemcase  5996  nntri3or  6639  nntri2  6640  exmidontriimlem1  7403  elnnz  9456  elznn0  9461  elznn  9462  zapne  9521  nn01to3  9812  elxr  9972  bezoutlemmain  12519  nninfctlemfo  12561  lgsdilem  15706  gausslemma2dlem4  15743
  Copyright terms: Public domain W3C validator