ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass GIF version

Theorem 3orass 983
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 981 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 orass 768 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2bitri 184 1 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981
This theorem is referenced by:  3orrot  986  3orcomb  989  3mix1  1168  sotritric  4360  sotritrieq  4361  ordtriexmid  4558  ontriexmidim  4559  acexmidlemcase  5920  nntri3or  6560  nntri2  6561  exmidontriimlem1  7304  elnnz  9353  elznn0  9358  elznn  9359  zapne  9417  nn01to3  9708  elxr  9868  bezoutlemmain  12190  nninfctlemfo  12232  lgsdilem  15352  gausslemma2dlem4  15389
  Copyright terms: Public domain W3C validator