Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orass | GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 974 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 762 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 183 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 ∨ w3o 972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-3or 974 |
This theorem is referenced by: 3orrot 979 3orcomb 982 3mix1 1161 sotritric 4309 sotritrieq 4310 ordtriexmid 4505 ontriexmidim 4506 acexmidlemcase 5848 nntri3or 6472 nntri2 6473 exmidontriimlem1 7198 elnnz 9222 elznn0 9227 elznn 9228 zapne 9286 nn01to3 9576 elxr 9733 bezoutlemmain 11953 lgsdilem 13722 |
Copyright terms: Public domain | W3C validator |