| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orass | GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1003 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 772 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 ∨ w3o 1001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 |
| This theorem is referenced by: 3orrot 1008 3orcomb 1011 3mix1 1190 3bior1fd 1386 sotritric 4415 sotritrieq 4416 ordtriexmid 4613 ontriexmidim 4614 acexmidlemcase 5996 nntri3or 6639 nntri2 6640 exmidontriimlem1 7403 elnnz 9456 elznn0 9461 elznn 9462 zapne 9521 nn01to3 9812 elxr 9972 bezoutlemmain 12519 nninfctlemfo 12561 lgsdilem 15706 gausslemma2dlem4 15743 |
| Copyright terms: Public domain | W3C validator |