| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orass | GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 982 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 769 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 |
| This theorem is referenced by: 3orrot 987 3orcomb 990 3mix1 1169 3bior1fd 1364 sotritric 4389 sotritrieq 4390 ordtriexmid 4587 ontriexmidim 4588 acexmidlemcase 5962 nntri3or 6602 nntri2 6603 exmidontriimlem1 7364 elnnz 9417 elznn0 9422 elznn 9423 zapne 9482 nn01to3 9773 elxr 9933 bezoutlemmain 12434 nninfctlemfo 12476 lgsdilem 15619 gausslemma2dlem4 15656 |
| Copyright terms: Public domain | W3C validator |