![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3orass | GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 981 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 768 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 ∨ w3o 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 |
This theorem is referenced by: 3orrot 986 3orcomb 989 3mix1 1168 sotritric 4355 sotritrieq 4356 ordtriexmid 4553 ontriexmidim 4554 acexmidlemcase 5913 nntri3or 6546 nntri2 6547 exmidontriimlem1 7281 elnnz 9327 elznn0 9332 elznn 9333 zapne 9391 nn01to3 9682 elxr 9842 bezoutlemmain 12135 nninfctlemfo 12177 lgsdilem 15143 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |