![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3or | GIF version |
Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 768. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3o 979 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
5 | 1, 2 | wo 709 | . . 3 wff (𝜑 ∨ 𝜓) |
6 | 5, 3 | wo 709 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff set class |
This definition is referenced by: 3orass 983 3orrot 986 3ioran 995 3orbi123i 1191 3ori 1311 3jao 1312 mpjao3dan 1318 3orbi123d 1322 3orim123d 1331 3or6 1334 ecase23d 1361 hb3or 1560 eueq3dc 2935 eltpg 3664 rextpg 3673 nntri3or 6548 nntri1 6551 nnsseleq 6556 elznn0nn 9334 zleloe 9367 uzm1 9626 xrnemnf 9846 xrnepnf 9847 xrltso 9865 hashfiv01gt1 10856 prm23ge5 12405 bd3or 15391 triap 15589 |
Copyright terms: Public domain | W3C validator |