![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3or | GIF version |
Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 768. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3o 979 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
5 | 1, 2 | wo 709 | . . 3 wff (𝜑 ∨ 𝜓) |
6 | 5, 3 | wo 709 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff set class |
This definition is referenced by: 3orass 983 3orrot 986 3ioran 995 3orbi123i 1191 3ori 1311 3jao 1312 mpjao3dan 1318 3orbi123d 1322 3orim123d 1331 3or6 1334 ecase23d 1361 hb3or 1560 eueq3dc 2934 eltpg 3663 rextpg 3672 nntri3or 6546 nntri1 6549 nnsseleq 6554 elznn0nn 9331 zleloe 9364 uzm1 9623 xrnemnf 9843 xrnepnf 9844 xrltso 9862 hashfiv01gt1 10853 prm23ge5 12402 bd3or 15321 triap 15519 |
Copyright terms: Public domain | W3C validator |