| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3or | GIF version | ||
| Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 772. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3o 1001 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| 5 | 1, 2 | wo 713 | . . 3 wff (𝜑 ∨ 𝜓) |
| 6 | 5, 3 | wo 713 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3orass 1005 3orrot 1008 3ioran 1017 3orbi123i 1213 3ori 1334 3jao 1335 mpjao3dan 1341 3orbi123d 1345 3orim123d 1354 3or6 1357 ecase23d 1384 hb3or 1595 eueq3dc 2977 eltpg 3711 rextpg 3720 nntri3or 6629 nntri1 6632 nnsseleq 6637 elznn0nn 9448 zleloe 9481 uzm1 9741 xrnemnf 9961 xrnepnf 9962 xrltso 9980 hashfiv01gt1 10991 swrdnd 11177 prm23ge5 12773 bd3or 16122 triap 16328 |
| Copyright terms: Public domain | W3C validator |