| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3or | GIF version | ||
| Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 769. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3o 980 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| 5 | 1, 2 | wo 710 | . . 3 wff (𝜑 ∨ 𝜓) |
| 6 | 5, 3 | wo 710 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3orass 984 3orrot 987 3ioran 996 3orbi123i 1192 3ori 1313 3jao 1314 mpjao3dan 1320 3orbi123d 1324 3orim123d 1333 3or6 1336 ecase23d 1363 hb3or 1573 eueq3dc 2949 eltpg 3680 rextpg 3689 nntri3or 6589 nntri1 6592 nnsseleq 6597 elznn0nn 9399 zleloe 9432 uzm1 9692 xrnemnf 9912 xrnepnf 9913 xrltso 9931 hashfiv01gt1 10940 swrdnd 11126 prm23ge5 12637 bd3or 15879 triap 16083 |
| Copyright terms: Public domain | W3C validator |