| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3or | GIF version | ||
| Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 768. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3o 979 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| 5 | 1, 2 | wo 709 | . . 3 wff (𝜑 ∨ 𝜓) |
| 6 | 5, 3 | wo 709 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3orass 983 3orrot 986 3ioran 995 3orbi123i 1191 3ori 1311 3jao 1312 mpjao3dan 1318 3orbi123d 1322 3orim123d 1331 3or6 1334 ecase23d 1361 hb3or 1563 eueq3dc 2938 eltpg 3668 rextpg 3677 nntri3or 6560 nntri1 6563 nnsseleq 6568 elznn0nn 9357 zleloe 9390 uzm1 9649 xrnemnf 9869 xrnepnf 9870 xrltso 9888 hashfiv01gt1 10891 prm23ge5 12458 bd3or 15559 triap 15760 |
| Copyright terms: Public domain | W3C validator |