| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-3or | GIF version | ||
| Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 772. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3o 1001 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| 5 | 1, 2 | wo 713 | . . 3 wff (𝜑 ∨ 𝜓) |
| 6 | 5, 3 | wo 713 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| Colors of variables: wff set class |
| This definition is referenced by: 3orass 1005 3orrot 1008 3ioran 1017 3orbi123i 1213 3ori 1334 3jao 1335 mpjao3dan 1341 3orbi123d 1345 3orim123d 1354 3or6 1357 ecase23d 1384 hb3or 1595 eueq3dc 2977 eltpg 3711 rextpg 3720 nntri3or 6647 nntri1 6650 nnsseleq 6655 elznn0nn 9468 zleloe 9501 uzm1 9761 xrnemnf 9981 xrnepnf 9982 xrltso 10000 hashfiv01gt1 11012 swrdnd 11199 prm23ge5 12795 bd3or 16216 triap 16427 |
| Copyright terms: Public domain | W3C validator |