![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3or | GIF version |
Description: Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 768. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3or | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3o 978 | . 2 wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
5 | 1, 2 | wo 709 | . . 3 wff (𝜑 ∨ 𝜓) |
6 | 5, 3 | wo 709 | . 2 wff ((𝜑 ∨ 𝜓) ∨ 𝜒) |
7 | 4, 6 | wb 105 | 1 wff ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
Colors of variables: wff set class |
This definition is referenced by: 3orass 982 3orrot 985 3ioran 994 3orbi123i 1190 3ori 1310 3jao 1311 mpjao3dan 1317 3orbi123d 1321 3orim123d 1330 3or6 1333 ecase23d 1360 hb3or 1559 eueq3dc 2923 eltpg 3649 rextpg 3658 nntri3or 6507 nntri1 6510 nnsseleq 6515 elznn0nn 9280 zleloe 9313 uzm1 9571 xrnemnf 9790 xrnepnf 9791 xrltso 9809 hashfiv01gt1 10775 prm23ge5 12277 bd3or 14808 triap 15005 |
Copyright terms: Public domain | W3C validator |