| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impdir | GIF version | ||
| Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impdir.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impdir | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdir.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) | |
| 2 | 1 | anandirs 593 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnanq0 7542 divcanap7 8765 |
| Copyright terms: Public domain | W3C validator |