Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impdir | GIF version |
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impdir.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Ref | Expression |
---|---|
3impdir | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impdir.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) | |
2 | 1 | anandirs 588 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
3 | 2 | 3impa 1189 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: nnanq0 7420 divcanap7 8638 |
Copyright terms: Public domain | W3C validator |