ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impdir GIF version

Theorem 3impdir 1289
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impdir.1 (((𝜑𝜓) ∧ (𝜒𝜓)) → 𝜃)
Assertion
Ref Expression
3impdir ((𝜑𝜒𝜓) → 𝜃)

Proof of Theorem 3impdir
StepHypRef Expression
1 3impdir.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜓)) → 𝜃)
21anandirs 588 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜃)
323impa 1189 1 ((𝜑𝜒𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  nnanq0  7420  divcanap7  8638
  Copyright terms: Public domain W3C validator