ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm12 GIF version

Theorem 3anidm12 1306
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1208 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 579 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anidm13  1307  syl2an3an  1309  fovcl  6032  prarloclemarch2  7505  nq02m  7551  recexprlem1ssl  7719  recexprlem1ssu  7720  nncan  8274  dividap  8747  modqid0  10461  sqdividap  10715  subsq  10757  retanclap  11906  tannegap  11912  gcd0id  12173  coprm  12339
  Copyright terms: Public domain W3C validator