![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anidm12 | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expib 1208 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
3 | 2 | anabsi5 579 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anidm13 1307 syl2an3an 1309 fovcl 6024 prarloclemarch2 7479 nq02m 7525 recexprlem1ssl 7693 recexprlem1ssu 7694 nncan 8248 dividap 8720 modqid0 10421 sqdividap 10675 subsq 10717 retanclap 11865 tannegap 11871 gcd0id 12116 coprm 12282 |
Copyright terms: Public domain | W3C validator |