![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anidm12 | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm12.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm12 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expib 1208 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
3 | 2 | anabsi5 579 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3anidm13 1307 syl2an3an 1309 fovcl 6025 prarloclemarch2 7481 nq02m 7527 recexprlem1ssl 7695 recexprlem1ssu 7696 nncan 8250 dividap 8722 modqid0 10424 sqdividap 10678 subsq 10720 retanclap 11868 tannegap 11874 gcd0id 12119 coprm 12285 |
Copyright terms: Public domain | W3C validator |