ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm12 GIF version

Theorem 3anidm12 1306
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1208 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 579 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3anidm13  1307  syl2an3an  1309  fovcl  6025  prarloclemarch2  7481  nq02m  7527  recexprlem1ssl  7695  recexprlem1ssu  7696  nncan  8250  dividap  8722  modqid0  10424  sqdividap  10678  subsq  10720  retanclap  11868  tannegap  11874  gcd0id  12119  coprm  12285
  Copyright terms: Public domain W3C validator