ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anidm12 GIF version

Theorem 3anidm12 1308
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.)
Hypothesis
Ref Expression
3anidm12.1 ((𝜑𝜑𝜓) → 𝜒)
Assertion
Ref Expression
3anidm12 ((𝜑𝜓) → 𝜒)

Proof of Theorem 3anidm12
StepHypRef Expression
1 3anidm12.1 . . 3 ((𝜑𝜑𝜓) → 𝜒)
213expib 1209 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 579 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3anidm13  1309  syl2an3an  1311  fovcl  6074  prarloclemarch2  7567  nq02m  7613  recexprlem1ssl  7781  recexprlem1ssu  7782  nncan  8336  dividap  8809  modqid0  10532  sqdividap  10786  subsq  10828  retanclap  12148  tannegap  12154  gcd0id  12415  coprm  12581
  Copyright terms: Public domain W3C validator