| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnanq0 | GIF version | ||
| Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| nnanq0 | ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addnnnq0 7562 | . . 3 ⊢ (((𝑁 ∈ ω ∧ 𝐴 ∈ N) ∧ (𝑀 ∈ ω ∧ 𝐴 ∈ N)) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) | |
| 2 | 1 | 3impdir 1307 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 3 | pinn 7422 | . . . . . . . 8 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 4 | nnmcom 6575 | . . . . . . . 8 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) | |
| 5 | 3, 4 | sylan2 286 | . . . . . . 7 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 6 | 5 | 3adant2 1019 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 7 | 6 | oveq1d 5959 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 8 | nndi 6572 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) | |
| 9 | 8 | 3coml 1213 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 10 | 3, 9 | syl3an3 1285 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 11 | 7, 10 | eqtr4d 2241 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀))) |
| 12 | 11 | opeq1d 3825 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉 = 〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉) |
| 13 | 12 | eceq1d 6656 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 14 | simp3 1002 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 𝐴 ∈ N) | |
| 15 | nnacl 6566 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω) | |
| 16 | 15 | 3adant3 1020 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 +o 𝑀) ∈ ω) |
| 17 | mulcanenq0ec 7558 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) | |
| 18 | 14, 16, 14, 17 | syl3anc 1250 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) |
| 19 | 2, 13, 18 | 3eqtrrd 2243 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 〈cop 3636 ωcom 4638 (class class class)co 5944 +o coa 6499 ·o comu 6500 [cec 6618 Ncnpi 7385 ~Q0 ceq0 7399 +Q0 cplq0 7402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-mi 7419 df-enq0 7537 df-nq0 7538 df-plq0 7540 |
| This theorem is referenced by: nq02m 7578 prarloclemcalc 7615 |
| Copyright terms: Public domain | W3C validator |