| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnanq0 | GIF version | ||
| Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| nnanq0 | ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addnnnq0 7561 | . . 3 ⊢ (((𝑁 ∈ ω ∧ 𝐴 ∈ N) ∧ (𝑀 ∈ ω ∧ 𝐴 ∈ N)) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) | |
| 2 | 1 | 3impdir 1306 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 3 | pinn 7421 | . . . . . . . 8 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 4 | nnmcom 6574 | . . . . . . . 8 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) | |
| 5 | 3, 4 | sylan2 286 | . . . . . . 7 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 6 | 5 | 3adant2 1018 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 7 | 6 | oveq1d 5958 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 8 | nndi 6571 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) | |
| 9 | 8 | 3coml 1212 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 10 | 3, 9 | syl3an3 1284 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 11 | 7, 10 | eqtr4d 2240 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀))) |
| 12 | 11 | opeq1d 3824 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉 = 〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉) |
| 13 | 12 | eceq1d 6655 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 14 | simp3 1001 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 𝐴 ∈ N) | |
| 15 | nnacl 6565 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω) | |
| 16 | 15 | 3adant3 1019 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 +o 𝑀) ∈ ω) |
| 17 | mulcanenq0ec 7557 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) | |
| 18 | 14, 16, 14, 17 | syl3anc 1249 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) |
| 19 | 2, 13, 18 | 3eqtrrd 2242 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 〈cop 3635 ωcom 4637 (class class class)co 5943 +o coa 6498 ·o comu 6499 [cec 6617 Ncnpi 7384 ~Q0 ceq0 7398 +Q0 cplq0 7401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-mi 7418 df-enq0 7536 df-nq0 7537 df-plq0 7539 |
| This theorem is referenced by: nq02m 7577 prarloclemcalc 7614 |
| Copyright terms: Public domain | W3C validator |