Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnanq0 | GIF version |
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
Ref | Expression |
---|---|
nnanq0 | ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addnnnq0 7411 | . . 3 ⊢ (((𝑁 ∈ ω ∧ 𝐴 ∈ N) ∧ (𝑀 ∈ ω ∧ 𝐴 ∈ N)) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) | |
2 | 1 | 3impdir 1289 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
3 | pinn 7271 | . . . . . . . 8 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
4 | nnmcom 6468 | . . . . . . . 8 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) | |
5 | 3, 4 | sylan2 284 | . . . . . . 7 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
6 | 5 | 3adant2 1011 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
7 | 6 | oveq1d 5868 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
8 | nndi 6465 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) | |
9 | 8 | 3coml 1205 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
10 | 3, 9 | syl3an3 1268 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
11 | 7, 10 | eqtr4d 2206 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀))) |
12 | 11 | opeq1d 3771 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉 = 〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉) |
13 | 12 | eceq1d 6549 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
14 | simp3 994 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 𝐴 ∈ N) | |
15 | nnacl 6459 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω) | |
16 | 15 | 3adant3 1012 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 +o 𝑀) ∈ ω) |
17 | mulcanenq0ec 7407 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) | |
18 | 14, 16, 14, 17 | syl3anc 1233 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) |
19 | 2, 13, 18 | 3eqtrrd 2208 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 ωcom 4574 (class class class)co 5853 +o coa 6392 ·o comu 6393 [cec 6511 Ncnpi 7234 ~Q0 ceq0 7248 +Q0 cplq0 7251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-enq0 7386 df-nq0 7387 df-plq0 7389 |
This theorem is referenced by: nq02m 7427 prarloclemcalc 7464 |
Copyright terms: Public domain | W3C validator |