ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 GIF version

Theorem nnanq0 7432
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7423 . . 3 (((𝑁 ∈ ω ∧ 𝐴N) ∧ (𝑀 ∈ ω ∧ 𝐴N)) → ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ) = [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
213impdir 1294 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ) = [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
3 pinn 7283 . . . . . . . 8 (𝐴N𝐴 ∈ ω)
4 nnmcom 6480 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
53, 4sylan2 286 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝐴N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
653adant2 1016 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
76oveq1d 5880 . . . . 5 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
8 nndi 6477 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
983coml 1210 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
103, 9syl3an3 1273 . . . . 5 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
117, 10eqtr4d 2211 . . . 4 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀)))
1211opeq1d 3780 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩ = ⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩)
1312eceq1d 6561 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
14 simp3 999 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → 𝐴N)
15 nnacl 6471 . . . 4 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω)
16153adant3 1017 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝑁 +o 𝑀) ∈ ω)
17 mulcanenq0ec 7419 . . 3 ((𝐴N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴N) → [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 )
1814, 16, 14, 17syl3anc 1238 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 )
192, 13, 183eqtrrd 2213 1 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2146  cop 3592  ωcom 4583  (class class class)co 5865   +o coa 6404   ·o comu 6405  [cec 6523  Ncnpi 7246   ~Q0 ceq0 7260   +Q0 cplq0 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-mi 7280  df-enq0 7398  df-nq0 7399  df-plq0 7401
This theorem is referenced by:  nq02m  7439  prarloclemcalc  7476
  Copyright terms: Public domain W3C validator