![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnanq0 | GIF version |
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
Ref | Expression |
---|---|
nnanq0 | ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addnnnq0 7509 | . . 3 ⊢ (((𝑁 ∈ ω ∧ 𝐴 ∈ N) ∧ (𝑀 ∈ ω ∧ 𝐴 ∈ N)) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) | |
2 | 1 | 3impdir 1305 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
3 | pinn 7369 | . . . . . . . 8 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
4 | nnmcom 6542 | . . . . . . . 8 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) | |
5 | 3, 4 | sylan2 286 | . . . . . . 7 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
6 | 5 | 3adant2 1018 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
7 | 6 | oveq1d 5933 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
8 | nndi 6539 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) | |
9 | 8 | 3coml 1212 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
10 | 3, 9 | syl3an3 1284 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
11 | 7, 10 | eqtr4d 2229 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀))) |
12 | 11 | opeq1d 3810 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉 = 〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉) |
13 | 12 | eceq1d 6623 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
14 | simp3 1001 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 𝐴 ∈ N) | |
15 | nnacl 6533 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω) | |
16 | 15 | 3adant3 1019 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 +o 𝑀) ∈ ω) |
17 | mulcanenq0ec 7505 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) | |
18 | 14, 16, 14, 17 | syl3anc 1249 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) |
19 | 2, 13, 18 | 3eqtrrd 2231 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 〈cop 3621 ωcom 4622 (class class class)co 5918 +o coa 6466 ·o comu 6467 [cec 6585 Ncnpi 7332 ~Q0 ceq0 7346 +Q0 cplq0 7349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-enq0 7484 df-nq0 7485 df-plq0 7487 |
This theorem is referenced by: nq02m 7525 prarloclemcalc 7562 |
Copyright terms: Public domain | W3C validator |