| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnanq0 | GIF version | ||
| Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| Ref | Expression |
|---|---|
| nnanq0 | ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addnnnq0 7597 | . . 3 ⊢ (((𝑁 ∈ ω ∧ 𝐴 ∈ N) ∧ (𝑀 ∈ ω ∧ 𝐴 ∈ N)) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) | |
| 2 | 1 | 3impdir 1307 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 ) = [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 3 | pinn 7457 | . . . . . . . 8 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 4 | nnmcom 6598 | . . . . . . . 8 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) | |
| 5 | 3, 4 | sylan2 286 | . . . . . . 7 ⊢ ((𝑁 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 6 | 5 | 3adant2 1019 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁)) |
| 7 | 6 | oveq1d 5982 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 8 | nndi 6595 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) | |
| 9 | 8 | 3coml 1213 | . . . . . 6 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 10 | 3, 9 | syl3an3 1285 | . . . . 5 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀))) |
| 11 | 7, 10 | eqtr4d 2243 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀))) |
| 12 | 11 | opeq1d 3839 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉 = 〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉) |
| 13 | 12 | eceq1d 6679 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 ) |
| 14 | simp3 1002 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → 𝐴 ∈ N) | |
| 15 | nnacl 6589 | . . . 4 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω) | |
| 16 | 15 | 3adant3 1020 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → (𝑁 +o 𝑀) ∈ ω) |
| 17 | mulcanenq0ec 7593 | . . 3 ⊢ ((𝐴 ∈ N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) | |
| 18 | 14, 16, 14, 17 | syl3anc 1250 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)〉] ~Q0 = [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 ) |
| 19 | 2, 13, 18 | 3eqtrrd 2245 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 〈cop 3646 ωcom 4656 (class class class)co 5967 +o coa 6522 ·o comu 6523 [cec 6641 Ncnpi 7420 ~Q0 ceq0 7434 +Q0 cplq0 7437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-mi 7454 df-enq0 7572 df-nq0 7573 df-plq0 7575 |
| This theorem is referenced by: nq02m 7613 prarloclemcalc 7650 |
| Copyright terms: Public domain | W3C validator |