ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 GIF version

Theorem nnanq0 7208
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7199 . . 3 (((𝑁 ∈ ω ∧ 𝐴N) ∧ (𝑀 ∈ ω ∧ 𝐴N)) → ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ) = [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
213impdir 1253 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ) = [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
3 pinn 7059 . . . . . . . 8 (𝐴N𝐴 ∈ ω)
4 nnmcom 6337 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝐴 ∈ ω) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
53, 4sylan2 282 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝐴N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
653adant2 981 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝑁 ·o 𝐴) = (𝐴 ·o 𝑁))
76oveq1d 5741 . . . . 5 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
8 nndi 6334 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
983coml 1169 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
103, 9syl3an3 1232 . . . . 5 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝐴 ·o (𝑁 +o 𝑀)) = ((𝐴 ·o 𝑁) +o (𝐴 ·o 𝑀)))
117, 10eqtr4d 2148 . . . 4 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)) = (𝐴 ·o (𝑁 +o 𝑀)))
1211opeq1d 3675 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → ⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩ = ⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩)
1312eceq1d 6417 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨((𝑁 ·o 𝐴) +o (𝐴 ·o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 )
14 simp3 964 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → 𝐴N)
15 nnacl 6328 . . . 4 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω) → (𝑁 +o 𝑀) ∈ ω)
16153adant3 982 . . 3 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → (𝑁 +o 𝑀) ∈ ω)
17 mulcanenq0ec 7195 . . 3 ((𝐴N ∧ (𝑁 +o 𝑀) ∈ ω ∧ 𝐴N) → [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 )
1814, 16, 14, 17syl3anc 1197 . 2 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝐴 ·o (𝑁 +o 𝑀)), (𝐴 ·o 𝐴)⟩] ~Q0 = [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 )
192, 13, 183eqtrrd 2150 1 ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 943   = wceq 1312  wcel 1461  cop 3494  ωcom 4462  (class class class)co 5726   +o coa 6262   ·o comu 6263  [cec 6379  Ncnpi 7022   ~Q0 ceq0 7036   +Q0 cplq0 7039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-mi 7056  df-enq0 7174  df-nq0 7175  df-plq0 7177
This theorem is referenced by:  nq02m  7215  prarloclemcalc  7252
  Copyright terms: Public domain W3C validator