ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandirs GIF version

Theorem anandirs 588
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandirs.1 (((𝜑𝜒) ∧ (𝜓𝜒)) → 𝜏)
Assertion
Ref Expression
anandirs (((𝜑𝜓) ∧ 𝜒) → 𝜏)

Proof of Theorem anandirs
StepHypRef Expression
1 anandirs.1 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒)) → 𝜏)
21an4s 583 . 2 (((𝜑𝜓) ∧ (𝜒𝜒)) → 𝜏)
32anabsan2 579 1 (((𝜑𝜓) ∧ 𝜒) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  3impdir  1289  fvreseq  5599  phplem4  6833  muladd  8303  iccshftr  9951  iccshftl  9953  iccdil  9955  icccntr  9957  fzaddel  10015  fzsubel  10016  mulexp  10515  upxp  13066  uptx  13068
  Copyright terms: Public domain W3C validator