ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix1i GIF version

Theorem 3mix1i 1154
Description: Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypothesis
Ref Expression
3mixi.1 𝜑
Assertion
Ref Expression
3mix1i (𝜑𝜓𝜒)

Proof of Theorem 3mix1i
StepHypRef Expression
1 3mixi.1 . 2 𝜑
2 3mix1 1151 . 2 (𝜑 → (𝜑𝜓𝜒))
31, 2ax-mp 5 1 (𝜑𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  w3o 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 964
This theorem is referenced by:  tpid1  3641  tpid1g  3642  0z  9088
  Copyright terms: Public domain W3C validator