| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid1g | GIF version | ||
| Description: Closed theorem form of tpid1 3757. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| tpid1g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1174 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) |
| 3 | eltpg 3691 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 982 = wceq 1375 ∈ wcel 2180 {ctp 3648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-tp 3654 |
| This theorem is referenced by: rngbaseg 13135 srngbased 13146 lmodbased 13164 ipsbased 13176 ipsscad 13179 topgrpbasd 13196 psrbasg 14603 |
| Copyright terms: Public domain | W3C validator |