ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid1g GIF version

Theorem tpid1g 3758
Description: Closed theorem form of tpid1 3757. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2209 . . 3 𝐴 = 𝐴
213mix1i 1174 . 2 (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)
3 eltpg 3691 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)))
42, 3mpbiri 168 1 (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 982   = wceq 1375  wcel 2180  {ctp 3648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3or 984  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-sn 3652  df-pr 3653  df-tp 3654
This theorem is referenced by:  rngbaseg  13135  srngbased  13146  lmodbased  13164  ipsbased  13176  ipsscad  13179  topgrpbasd  13196  psrbasg  14603
  Copyright terms: Public domain W3C validator