![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpid1g | GIF version |
Description: Closed theorem form of tpid1 3729. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid1g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1171 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) |
3 | eltpg 3663 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 {ctp 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-tp 3626 |
This theorem is referenced by: rngbaseg 12753 srngbased 12764 lmodbased 12782 ipsbased 12794 ipsscad 12797 topgrpbasd 12814 psrbasg 14159 |
Copyright terms: Public domain | W3C validator |