Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpid1g | GIF version |
Description: Closed theorem form of tpid1 3687. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid1g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1159 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) |
3 | eltpg 3621 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
4 | 2, 3 | mpbiri 167 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 {ctp 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-tp 3584 |
This theorem is referenced by: rngbaseg 12511 srngbased 12518 lmodbased 12529 ipsbased 12537 ipsscad 12540 topgrpbasd 12547 |
Copyright terms: Public domain | W3C validator |