Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0z | GIF version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z | ⊢ 0 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7895 | . 2 ⊢ 0 ∈ ℝ | |
2 | eqid 2165 | . . 3 ⊢ 0 = 0 | |
3 | 2 | 3mix1i 1159 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
4 | elz 9189 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
5 | 1, 3, 4 | mpbir2an 932 | 1 ⊢ 0 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ℝcr 7748 0cc0 7749 -cneg 8066 ℕcn 8853 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 |
This theorem is referenced by: 0zd 9199 nn0ssz 9205 znegcl 9218 zgt0ge1 9245 nn0n0n1ge2b 9266 nn0lt10b 9267 nnm1ge0 9273 gtndiv 9282 msqznn 9287 zeo 9292 nn0ind 9301 fnn0ind 9303 nn0uz 9496 1eluzge0 9508 elnn0dc 9545 eqreznegel 9548 qreccl 9576 qdivcl 9577 irrmul 9581 fz10 9977 fz01en 9984 fzpreddisj 10002 fzshftral 10039 fznn0 10044 fz1ssfz0 10048 fz0sn 10052 fz0tp 10053 fz0to3un2pr 10054 fz0to4untppr 10055 elfz0ubfz0 10056 1fv 10070 lbfzo0 10112 elfzonlteqm1 10141 fzo01 10147 fzo0to2pr 10149 fzo0to3tp 10150 flqge0nn0 10224 divfl0 10227 btwnzge0 10231 modqmulnn 10273 zmodfz 10277 modqid 10280 zmodid2 10283 q0mod 10286 modqmuladdnn0 10299 frecfzennn 10357 qexpclz 10472 qsqeqor 10561 facdiv 10647 bcval 10658 bcnn 10666 bcm1k 10669 bcval5 10672 bcpasc 10675 4bc2eq6 10683 hashinfom 10687 rexfiuz 10927 qabsor 11013 nn0abscl 11023 nnabscl 11038 climz 11229 climaddc1 11266 climmulc2 11268 climsubc1 11269 climsubc2 11270 climlec2 11278 binomlem 11420 binom 11421 bcxmas 11426 arisum2 11436 explecnv 11442 ef0lem 11597 dvdsval2 11726 dvdsdc 11734 moddvds 11735 dvds0 11742 0dvds 11747 zdvdsdc 11748 dvdscmulr 11756 dvdsmulcr 11757 dvdslelemd 11777 dvdsabseq 11781 divconjdvds 11783 alzdvds 11788 fzo0dvdseq 11791 odd2np1lem 11805 gcdmndc 11873 gcdsupex 11886 gcdsupcl 11887 gcd0val 11889 gcddvds 11892 gcd0id 11908 gcdid0 11909 gcdid 11915 bezoutlema 11928 bezoutlemb 11929 bezoutlembi 11934 dfgcd3 11939 dfgcd2 11943 gcdmultiplez 11950 dvdssq 11960 algcvgblem 11977 lcmmndc 11990 lcm0val 11993 dvdslcm 11997 lcmeq0 11999 lcmgcd 12006 lcmdvds 12007 lcmid 12008 3lcm2e6woprm 12014 6lcm4e12 12015 cncongr2 12032 sqrt2irrap 12108 dfphi2 12148 phiprmpw 12150 crth 12152 phimullem 12153 eulerthlemfi 12156 hashgcdeq 12167 phisum 12168 pceu 12223 pcdiv 12230 pc0 12232 pcqdiv 12235 pcexp 12237 pcxnn0cl 12238 pcxcl 12239 pcdvdstr 12254 dvdsprmpweqnn 12263 pcaddlem 12266 pcadd 12267 pcfaclem 12275 qexpz 12278 zgz 12299 igz 12300 ennnfonelemjn 12331 ennnfonelem1 12336 rpcxp0 13419 lgslem2 13502 lgsfcl2 13507 lgs0 13514 lgsneg 13525 lgsdilem 13528 lgsdir2lem3 13531 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 lgsprme0 13543 lgsdirnn0 13548 lgsdinn0 13549 apdifflemr 13886 apdiff 13887 iswomni0 13890 nconstwlpolem 13903 |
Copyright terms: Public domain | W3C validator |