| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) | 
| Ref | Expression | 
|---|---|
| 0z | ⊢ 0 ∈ ℤ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0re 8026 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2196 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1171 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) | 
| 4 | elz 9328 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 944 | 1 ⊢ 0 ∈ ℤ | 
| Colors of variables: wff set class | 
| Syntax hints: ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7878 0cc0 7879 -cneg 8198 ℕcn 8990 ℤcz 9326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 | 
| This theorem is referenced by: 0zd 9338 nn0ssz 9344 znegcl 9357 zgt0ge1 9384 nn0n0n1ge2b 9405 nn0lt10b 9406 nnm1ge0 9412 gtndiv 9421 msqznn 9426 zeo 9431 nn0ind 9440 fnn0ind 9442 nn0uz 9636 1eluzge0 9648 elnn0dc 9685 eqreznegel 9688 qreccl 9716 qdivcl 9717 irrmul 9721 irrmulap 9722 fz10 10121 fz01en 10128 fzpreddisj 10146 fzshftral 10183 fznn0 10188 fz1ssfz0 10192 fz0sn 10196 fz0tp 10197 fz0to3un2pr 10198 fz0to4untppr 10199 elfz0ubfz0 10200 1fv 10214 lbfzo0 10257 elfzonlteqm1 10286 fzo01 10292 fzo0to2pr 10294 fzo0to3tp 10295 flqge0nn0 10383 divfl0 10386 btwnzge0 10390 modqmulnn 10434 zmodfz 10438 modqid 10441 zmodid2 10444 q0mod 10447 modqmuladdnn0 10460 frecfzennn 10518 xnn0nnen 10529 qexpclz 10652 qsqeqor 10742 facdiv 10830 bcval 10841 bcnn 10849 bcm1k 10852 bcval5 10855 bcpasc 10858 4bc2eq6 10866 hashinfom 10870 iswrd 10937 iswrdiz 10942 wrdexg 10946 wrdfin 10954 wrdnval 10965 wrdred1hash 10978 rexfiuz 11154 qabsor 11240 nn0abscl 11250 nnabscl 11265 climz 11457 climaddc1 11494 climmulc2 11496 climsubc1 11497 climsubc2 11498 climlec2 11506 binomlem 11648 binom 11649 bcxmas 11654 arisum2 11664 explecnv 11670 ef0lem 11825 dvdsval2 11955 dvdsdc 11963 moddvds 11964 dvds0 11971 0dvds 11976 zdvdsdc 11977 dvdscmulr 11985 dvdsmulcr 11986 fsumdvds 12007 dvdslelemd 12008 dvdsabseq 12012 divconjdvds 12014 alzdvds 12019 fzo0dvdseq 12022 odd2np1lem 12037 bitsfzo 12119 gcdmndc 12122 gcdsupex 12124 gcdsupcl 12125 gcd0val 12127 gcddvds 12130 gcd0id 12146 gcdid0 12147 gcdid 12153 bezoutlema 12166 bezoutlemb 12167 bezoutlembi 12172 dfgcd3 12177 dfgcd2 12181 gcdmultiplez 12188 dvdssq 12198 algcvgblem 12217 lcmmndc 12230 lcm0val 12233 dvdslcm 12237 lcmeq0 12239 lcmgcd 12246 lcmdvds 12247 lcmid 12248 3lcm2e6woprm 12254 6lcm4e12 12255 cncongr2 12272 sqrt2irrap 12348 dfphi2 12388 phiprmpw 12390 crth 12392 phimullem 12393 eulerthlemfi 12396 hashgcdeq 12408 phisum 12409 pceu 12464 pcdiv 12471 pc0 12473 pcqdiv 12476 pcexp 12478 pcxnn0cl 12479 pcxcl 12480 pcxqcl 12481 pcdvdstr 12496 dvdsprmpweqnn 12505 pcaddlem 12508 pcadd 12509 pcfaclem 12518 qexpz 12521 zgz 12542 igz 12543 4sqlem19 12578 ennnfonelemjn 12619 ennnfonelem1 12624 mulg0 13255 subgmulg 13318 zring0 14156 zndvds0 14206 znf1o 14207 znfi 14211 znhash 14212 plycolemc 14994 rpcxp0 15134 0sgm 15221 1sgmprm 15230 lgslem2 15242 lgsfcl2 15247 lgs0 15254 lgsneg 15265 lgsdilem 15268 lgsdir2lem3 15271 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 lgsprme0 15283 lgsdirnn0 15288 lgsdinn0 15289 apdifflemr 15691 apdiff 15692 iswomni0 15695 nconstwlpolem 15709 | 
| Copyright terms: Public domain | W3C validator |