| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8043 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2196 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1171 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 9345 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 944 | 1 ⊢ 0 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7895 0cc0 7896 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 |
| This theorem is referenced by: 0zd 9355 nn0ssz 9361 znegcl 9374 zgt0ge1 9401 nn0n0n1ge2b 9422 nn0lt10b 9423 nnm1ge0 9429 gtndiv 9438 msqznn 9443 zeo 9448 nn0ind 9457 fnn0ind 9459 nn0uz 9653 1eluzge0 9665 elnn0dc 9702 eqreznegel 9705 qreccl 9733 qdivcl 9734 irrmul 9738 irrmulap 9739 fz10 10138 fz01en 10145 fzpreddisj 10163 fzshftral 10200 fznn0 10205 fz1ssfz0 10209 fz0sn 10213 fz0tp 10214 fz0to3un2pr 10215 fz0to4untppr 10216 elfz0ubfz0 10217 1fv 10231 lbfzo0 10274 elfzonlteqm1 10303 fzo01 10309 fzo0to2pr 10311 fzo0to3tp 10312 flqge0nn0 10400 divfl0 10403 btwnzge0 10407 modqmulnn 10451 zmodfz 10455 modqid 10458 zmodid2 10461 q0mod 10464 modqmuladdnn0 10477 frecfzennn 10535 xnn0nnen 10546 qexpclz 10669 qsqeqor 10759 facdiv 10847 bcval 10858 bcnn 10866 bcm1k 10869 bcval5 10872 bcpasc 10875 4bc2eq6 10883 hashinfom 10887 iswrd 10954 iswrdiz 10959 wrdexg 10963 wrdfin 10971 wrdnval 10982 wrdred1hash 10995 rexfiuz 11171 qabsor 11257 nn0abscl 11267 nnabscl 11282 climz 11474 climaddc1 11511 climmulc2 11513 climsubc1 11514 climsubc2 11515 climlec2 11523 binomlem 11665 binom 11666 bcxmas 11671 arisum2 11681 explecnv 11687 ef0lem 11842 dvdsval2 11972 dvdsdc 11980 moddvds 11981 dvds0 11988 0dvds 11993 zdvdsdc 11994 dvdscmulr 12002 dvdsmulcr 12003 fsumdvds 12024 dvdslelemd 12025 dvdsabseq 12029 divconjdvds 12031 alzdvds 12036 fzo0dvdseq 12039 odd2np1lem 12054 bitsfzo 12137 bitsmod 12138 0bits 12141 m1bits 12142 bitsinv1lem 12143 bitsinv1 12144 gcdmndc 12147 gcdsupex 12149 gcdsupcl 12150 gcd0val 12152 gcddvds 12155 gcd0id 12171 gcdid0 12172 gcdid 12178 bezoutlema 12191 bezoutlemb 12192 bezoutlembi 12197 dfgcd3 12202 dfgcd2 12206 gcdmultiplez 12213 dvdssq 12223 algcvgblem 12242 lcmmndc 12255 lcm0val 12258 dvdslcm 12262 lcmeq0 12264 lcmgcd 12271 lcmdvds 12272 lcmid 12273 3lcm2e6woprm 12279 6lcm4e12 12280 cncongr2 12297 sqrt2irrap 12373 dfphi2 12413 phiprmpw 12415 crth 12417 phimullem 12418 eulerthlemfi 12421 hashgcdeq 12433 phisum 12434 pceu 12489 pcdiv 12496 pc0 12498 pcqdiv 12501 pcexp 12503 pcxnn0cl 12504 pcxcl 12505 pcxqcl 12506 pcdvdstr 12521 dvdsprmpweqnn 12530 pcaddlem 12533 pcadd 12534 pcfaclem 12543 qexpz 12546 zgz 12567 igz 12568 4sqlem19 12603 ennnfonelemjn 12644 ennnfonelem1 12649 mulg0 13331 subgmulg 13394 zring0 14232 zndvds0 14282 znf1o 14283 znfi 14287 znhash 14288 psr1clfi 14316 plycolemc 15078 rpcxp0 15218 0sgm 15305 1sgmprm 15314 lgslem2 15326 lgsfcl2 15331 lgs0 15338 lgsneg 15349 lgsdilem 15352 lgsdir2lem3 15355 lgsdir 15360 lgsdilem2 15361 lgsdi 15362 lgsne0 15363 lgsprme0 15367 lgsdirnn0 15372 lgsdinn0 15373 apdifflemr 15778 apdiff 15779 iswomni0 15782 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |