| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8154 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2229 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1193 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 9456 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 948 | 1 ⊢ 0 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ℝcr 8006 0cc0 8007 -cneg 8326 ℕcn 9118 ℤcz 9454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8101 ax-addrcl 8104 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-neg 8328 df-z 9455 |
| This theorem is referenced by: 0zd 9466 nn0ssz 9472 znegcl 9485 nnnle0 9503 zgt0ge1 9513 nn0n0n1ge2b 9534 nn0lt10b 9535 nnm1ge0 9541 gtndiv 9550 msqznn 9555 zeo 9560 nn0ind 9569 fnn0ind 9571 nn0uz 9765 1eluzge0 9777 elnn0dc 9814 eqreznegel 9817 qreccl 9845 qdivcl 9846 irrmul 9850 irrmulap 9851 fz10 10250 fz01en 10257 fzpreddisj 10275 fzshftral 10312 fznn0 10317 fz1ssfz0 10321 fz0sn 10325 fz0tp 10326 fz0to3un2pr 10327 fz0to4untppr 10328 elfz0ubfz0 10329 1fv 10343 fzo0n 10372 lbfzo0 10389 elfzonlteqm1 10424 fzo01 10430 fzo0to2pr 10432 fzo0to3tp 10433 flqge0nn0 10521 divfl0 10524 btwnzge0 10528 modqmulnn 10572 zmodfz 10576 modqid 10579 zmodid2 10582 q0mod 10585 modqmuladdnn0 10598 frecfzennn 10656 xnn0nnen 10667 qexpclz 10790 qsqeqor 10880 facdiv 10968 bcval 10979 bcnn 10987 bcm1k 10990 bcval5 10993 bcpasc 10996 4bc2eq6 11004 hashinfom 11008 iswrd 11081 iswrdiz 11086 wrdexg 11090 wrdfin 11098 wrdnval 11110 wrdred1hash 11123 lsw0 11127 ccatsymb 11145 s111 11172 ccat1st1st 11180 fzowrddc 11187 swrdlen 11192 swrdnd 11199 swrdwrdsymbg 11204 swrds1 11208 pfxval 11214 pfx00g 11215 pfx0g 11216 fnpfx 11217 pfxlen 11225 swrdccatin1 11265 swrdccat 11275 swrdccat3blem 11279 rexfiuz 11508 qabsor 11594 nn0abscl 11604 nnabscl 11619 climz 11811 climaddc1 11848 climmulc2 11850 climsubc1 11851 climsubc2 11852 climlec2 11860 binomlem 12002 binom 12003 bcxmas 12008 arisum2 12018 explecnv 12024 ef0lem 12179 dvdsval2 12309 dvdsdc 12317 moddvds 12318 dvds0 12325 0dvds 12330 zdvdsdc 12331 dvdscmulr 12339 dvdsmulcr 12340 fsumdvds 12361 dvdslelemd 12362 dvdsabseq 12366 divconjdvds 12368 alzdvds 12373 fzo0dvdseq 12376 odd2np1lem 12391 bitsfzo 12474 bitsmod 12475 0bits 12478 m1bits 12479 bitsinv1lem 12480 bitsinv1 12481 gcdmndc 12484 gcdsupex 12486 gcdsupcl 12487 gcd0val 12489 gcddvds 12492 gcd0id 12508 gcdid0 12509 gcdid 12515 bezoutlema 12528 bezoutlemb 12529 bezoutlembi 12534 dfgcd3 12539 dfgcd2 12543 gcdmultiplez 12550 dvdssq 12560 algcvgblem 12579 lcmmndc 12592 lcm0val 12595 dvdslcm 12599 lcmeq0 12601 lcmgcd 12608 lcmdvds 12609 lcmid 12610 3lcm2e6woprm 12616 6lcm4e12 12617 cncongr2 12634 sqrt2irrap 12710 dfphi2 12750 phiprmpw 12752 crth 12754 phimullem 12755 eulerthlemfi 12758 hashgcdeq 12770 phisum 12771 pceu 12826 pcdiv 12833 pc0 12835 pcqdiv 12838 pcexp 12840 pcxnn0cl 12841 pcxcl 12842 pcxqcl 12843 pcdvdstr 12858 dvdsprmpweqnn 12867 pcaddlem 12870 pcadd 12871 pcfaclem 12880 qexpz 12883 zgz 12904 igz 12905 4sqlem19 12940 ennnfonelemjn 12981 ennnfonelem1 12986 mulg0 13670 subgmulg 13733 zring0 14572 zndvds0 14622 znf1o 14623 znfi 14627 znhash 14628 psr1clfi 14660 plycolemc 15440 rpcxp0 15580 0sgm 15667 1sgmprm 15676 lgslem2 15688 lgsfcl2 15693 lgs0 15700 lgsneg 15711 lgsdilem 15714 lgsdir2lem3 15717 lgsdir 15722 lgsdilem2 15723 lgsdi 15724 lgsne0 15725 lgsprme0 15729 lgsdirnn0 15734 lgsdinn0 15735 wlkv0 16090 wlklenvclwlk 16094 upgr2wlkdc 16096 apdifflemr 16445 apdiff 16446 iswomni0 16449 nconstwlpolem 16463 |
| Copyright terms: Public domain | W3C validator |