Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0z | GIF version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z | ⊢ 0 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7920 | . 2 ⊢ 0 ∈ ℝ | |
2 | eqid 2170 | . . 3 ⊢ 0 = 0 | |
3 | 2 | 3mix1i 1164 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
4 | elz 9214 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
5 | 1, 3, 4 | mpbir2an 937 | 1 ⊢ 0 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ℝcr 7773 0cc0 7774 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: 0zd 9224 nn0ssz 9230 znegcl 9243 zgt0ge1 9270 nn0n0n1ge2b 9291 nn0lt10b 9292 nnm1ge0 9298 gtndiv 9307 msqznn 9312 zeo 9317 nn0ind 9326 fnn0ind 9328 nn0uz 9521 1eluzge0 9533 elnn0dc 9570 eqreznegel 9573 qreccl 9601 qdivcl 9602 irrmul 9606 fz10 10002 fz01en 10009 fzpreddisj 10027 fzshftral 10064 fznn0 10069 fz1ssfz0 10073 fz0sn 10077 fz0tp 10078 fz0to3un2pr 10079 fz0to4untppr 10080 elfz0ubfz0 10081 1fv 10095 lbfzo0 10137 elfzonlteqm1 10166 fzo01 10172 fzo0to2pr 10174 fzo0to3tp 10175 flqge0nn0 10249 divfl0 10252 btwnzge0 10256 modqmulnn 10298 zmodfz 10302 modqid 10305 zmodid2 10308 q0mod 10311 modqmuladdnn0 10324 frecfzennn 10382 qexpclz 10497 qsqeqor 10586 facdiv 10672 bcval 10683 bcnn 10691 bcm1k 10694 bcval5 10697 bcpasc 10700 4bc2eq6 10708 hashinfom 10712 rexfiuz 10953 qabsor 11039 nn0abscl 11049 nnabscl 11064 climz 11255 climaddc1 11292 climmulc2 11294 climsubc1 11295 climsubc2 11296 climlec2 11304 binomlem 11446 binom 11447 bcxmas 11452 arisum2 11462 explecnv 11468 ef0lem 11623 dvdsval2 11752 dvdsdc 11760 moddvds 11761 dvds0 11768 0dvds 11773 zdvdsdc 11774 dvdscmulr 11782 dvdsmulcr 11783 dvdslelemd 11803 dvdsabseq 11807 divconjdvds 11809 alzdvds 11814 fzo0dvdseq 11817 odd2np1lem 11831 gcdmndc 11899 gcdsupex 11912 gcdsupcl 11913 gcd0val 11915 gcddvds 11918 gcd0id 11934 gcdid0 11935 gcdid 11941 bezoutlema 11954 bezoutlemb 11955 bezoutlembi 11960 dfgcd3 11965 dfgcd2 11969 gcdmultiplez 11976 dvdssq 11986 algcvgblem 12003 lcmmndc 12016 lcm0val 12019 dvdslcm 12023 lcmeq0 12025 lcmgcd 12032 lcmdvds 12033 lcmid 12034 3lcm2e6woprm 12040 6lcm4e12 12041 cncongr2 12058 sqrt2irrap 12134 dfphi2 12174 phiprmpw 12176 crth 12178 phimullem 12179 eulerthlemfi 12182 hashgcdeq 12193 phisum 12194 pceu 12249 pcdiv 12256 pc0 12258 pcqdiv 12261 pcexp 12263 pcxnn0cl 12264 pcxcl 12265 pcdvdstr 12280 dvdsprmpweqnn 12289 pcaddlem 12292 pcadd 12293 pcfaclem 12301 qexpz 12304 zgz 12325 igz 12326 ennnfonelemjn 12357 ennnfonelem1 12362 rpcxp0 13613 lgslem2 13696 lgsfcl2 13701 lgs0 13708 lgsneg 13719 lgsdilem 13722 lgsdir2lem3 13725 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 lgsprme0 13737 lgsdirnn0 13742 lgsdinn0 13743 apdifflemr 14079 apdiff 14080 iswomni0 14083 nconstwlpolem 14096 |
Copyright terms: Public domain | W3C validator |