| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2209 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1174 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 9416 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 947 | 1 ⊢ 0 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 982 = wceq 1375 ∈ wcel 2180 ℝcr 7966 0cc0 7967 -cneg 8286 ℕcn 9078 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-1re 8061 ax-addrcl 8064 ax-rnegex 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-neg 8288 df-z 9415 |
| This theorem is referenced by: 0zd 9426 nn0ssz 9432 znegcl 9445 nnnle0 9463 zgt0ge1 9473 nn0n0n1ge2b 9494 nn0lt10b 9495 nnm1ge0 9501 gtndiv 9510 msqznn 9515 zeo 9520 nn0ind 9529 fnn0ind 9531 nn0uz 9725 1eluzge0 9737 elnn0dc 9774 eqreznegel 9777 qreccl 9805 qdivcl 9806 irrmul 9810 irrmulap 9811 fz10 10210 fz01en 10217 fzpreddisj 10235 fzshftral 10272 fznn0 10277 fz1ssfz0 10281 fz0sn 10285 fz0tp 10286 fz0to3un2pr 10287 fz0to4untppr 10288 elfz0ubfz0 10289 1fv 10303 fzo0n 10332 lbfzo0 10349 elfzonlteqm1 10383 fzo01 10389 fzo0to2pr 10391 fzo0to3tp 10392 flqge0nn0 10480 divfl0 10483 btwnzge0 10487 modqmulnn 10531 zmodfz 10535 modqid 10538 zmodid2 10541 q0mod 10544 modqmuladdnn0 10557 frecfzennn 10615 xnn0nnen 10626 qexpclz 10749 qsqeqor 10839 facdiv 10927 bcval 10938 bcnn 10946 bcm1k 10949 bcval5 10952 bcpasc 10955 4bc2eq6 10963 hashinfom 10967 iswrd 11040 iswrdiz 11045 wrdexg 11049 wrdfin 11057 wrdnval 11068 wrdred1hash 11081 lsw0 11085 ccatsymb 11103 s111 11130 ccat1st1st 11138 fzowrddc 11145 swrdlen 11150 swrdnd 11157 swrdwrdsymbg 11162 swrds1 11166 pfxval 11172 pfx00g 11173 pfx0g 11174 fnpfx 11175 pfxlen 11183 swrdccatin1 11223 swrdccat 11233 swrdccat3blem 11237 rexfiuz 11466 qabsor 11552 nn0abscl 11562 nnabscl 11577 climz 11769 climaddc1 11806 climmulc2 11808 climsubc1 11809 climsubc2 11810 climlec2 11818 binomlem 11960 binom 11961 bcxmas 11966 arisum2 11976 explecnv 11982 ef0lem 12137 dvdsval2 12267 dvdsdc 12275 moddvds 12276 dvds0 12283 0dvds 12288 zdvdsdc 12289 dvdscmulr 12297 dvdsmulcr 12298 fsumdvds 12319 dvdslelemd 12320 dvdsabseq 12324 divconjdvds 12326 alzdvds 12331 fzo0dvdseq 12334 odd2np1lem 12349 bitsfzo 12432 bitsmod 12433 0bits 12436 m1bits 12437 bitsinv1lem 12438 bitsinv1 12439 gcdmndc 12442 gcdsupex 12444 gcdsupcl 12445 gcd0val 12447 gcddvds 12450 gcd0id 12466 gcdid0 12467 gcdid 12473 bezoutlema 12486 bezoutlemb 12487 bezoutlembi 12492 dfgcd3 12497 dfgcd2 12501 gcdmultiplez 12508 dvdssq 12518 algcvgblem 12537 lcmmndc 12550 lcm0val 12553 dvdslcm 12557 lcmeq0 12559 lcmgcd 12566 lcmdvds 12567 lcmid 12568 3lcm2e6woprm 12574 6lcm4e12 12575 cncongr2 12592 sqrt2irrap 12668 dfphi2 12708 phiprmpw 12710 crth 12712 phimullem 12713 eulerthlemfi 12716 hashgcdeq 12728 phisum 12729 pceu 12784 pcdiv 12791 pc0 12793 pcqdiv 12796 pcexp 12798 pcxnn0cl 12799 pcxcl 12800 pcxqcl 12801 pcdvdstr 12816 dvdsprmpweqnn 12825 pcaddlem 12828 pcadd 12829 pcfaclem 12838 qexpz 12841 zgz 12862 igz 12863 4sqlem19 12898 ennnfonelemjn 12939 ennnfonelem1 12944 mulg0 13628 subgmulg 13691 zring0 14529 zndvds0 14579 znf1o 14580 znfi 14584 znhash 14585 psr1clfi 14617 plycolemc 15397 rpcxp0 15537 0sgm 15624 1sgmprm 15633 lgslem2 15645 lgsfcl2 15650 lgs0 15657 lgsneg 15668 lgsdilem 15671 lgsdir2lem3 15674 lgsdir 15679 lgsdilem2 15680 lgsdi 15681 lgsne0 15682 lgsprme0 15686 lgsdirnn0 15691 lgsdinn0 15692 apdifflemr 16326 apdiff 16327 iswomni0 16330 nconstwlpolem 16344 |
| Copyright terms: Public domain | W3C validator |