| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8045 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2196 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1171 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 9347 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 944 | 1 ⊢ 0 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7897 0cc0 7898 -cneg 8217 ℕcn 9009 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 |
| This theorem is referenced by: 0zd 9357 nn0ssz 9363 znegcl 9376 zgt0ge1 9403 nn0n0n1ge2b 9424 nn0lt10b 9425 nnm1ge0 9431 gtndiv 9440 msqznn 9445 zeo 9450 nn0ind 9459 fnn0ind 9461 nn0uz 9655 1eluzge0 9667 elnn0dc 9704 eqreznegel 9707 qreccl 9735 qdivcl 9736 irrmul 9740 irrmulap 9741 fz10 10140 fz01en 10147 fzpreddisj 10165 fzshftral 10202 fznn0 10207 fz1ssfz0 10211 fz0sn 10215 fz0tp 10216 fz0to3un2pr 10217 fz0to4untppr 10218 elfz0ubfz0 10219 1fv 10233 lbfzo0 10276 elfzonlteqm1 10305 fzo01 10311 fzo0to2pr 10313 fzo0to3tp 10314 flqge0nn0 10402 divfl0 10405 btwnzge0 10409 modqmulnn 10453 zmodfz 10457 modqid 10460 zmodid2 10463 q0mod 10466 modqmuladdnn0 10479 frecfzennn 10537 xnn0nnen 10548 qexpclz 10671 qsqeqor 10761 facdiv 10849 bcval 10860 bcnn 10868 bcm1k 10871 bcval5 10874 bcpasc 10877 4bc2eq6 10885 hashinfom 10889 iswrd 10956 iswrdiz 10961 wrdexg 10965 wrdfin 10973 wrdnval 10984 wrdred1hash 10997 rexfiuz 11173 qabsor 11259 nn0abscl 11269 nnabscl 11284 climz 11476 climaddc1 11513 climmulc2 11515 climsubc1 11516 climsubc2 11517 climlec2 11525 binomlem 11667 binom 11668 bcxmas 11673 arisum2 11683 explecnv 11689 ef0lem 11844 dvdsval2 11974 dvdsdc 11982 moddvds 11983 dvds0 11990 0dvds 11995 zdvdsdc 11996 dvdscmulr 12004 dvdsmulcr 12005 fsumdvds 12026 dvdslelemd 12027 dvdsabseq 12031 divconjdvds 12033 alzdvds 12038 fzo0dvdseq 12041 odd2np1lem 12056 bitsfzo 12139 bitsmod 12140 0bits 12143 m1bits 12144 bitsinv1lem 12145 bitsinv1 12146 gcdmndc 12149 gcdsupex 12151 gcdsupcl 12152 gcd0val 12154 gcddvds 12157 gcd0id 12173 gcdid0 12174 gcdid 12180 bezoutlema 12193 bezoutlemb 12194 bezoutlembi 12199 dfgcd3 12204 dfgcd2 12208 gcdmultiplez 12215 dvdssq 12225 algcvgblem 12244 lcmmndc 12257 lcm0val 12260 dvdslcm 12264 lcmeq0 12266 lcmgcd 12273 lcmdvds 12274 lcmid 12275 3lcm2e6woprm 12281 6lcm4e12 12282 cncongr2 12299 sqrt2irrap 12375 dfphi2 12415 phiprmpw 12417 crth 12419 phimullem 12420 eulerthlemfi 12423 hashgcdeq 12435 phisum 12436 pceu 12491 pcdiv 12498 pc0 12500 pcqdiv 12503 pcexp 12505 pcxnn0cl 12506 pcxcl 12507 pcxqcl 12508 pcdvdstr 12523 dvdsprmpweqnn 12532 pcaddlem 12535 pcadd 12536 pcfaclem 12545 qexpz 12548 zgz 12569 igz 12570 4sqlem19 12605 ennnfonelemjn 12646 ennnfonelem1 12651 mulg0 13333 subgmulg 13396 zring0 14234 zndvds0 14284 znf1o 14285 znfi 14289 znhash 14290 psr1clfi 14322 plycolemc 15102 rpcxp0 15242 0sgm 15329 1sgmprm 15338 lgslem2 15350 lgsfcl2 15355 lgs0 15362 lgsneg 15373 lgsdilem 15376 lgsdir2lem3 15379 lgsdir 15384 lgsdilem2 15385 lgsdi 15386 lgsne0 15387 lgsprme0 15391 lgsdirnn0 15396 lgsdinn0 15397 apdifflemr 15804 apdiff 15805 iswomni0 15808 nconstwlpolem 15822 |
| Copyright terms: Public domain | W3C validator |