| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8079 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2206 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1172 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 9381 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 945 | 1 ⊢ 0 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ℝcr 7931 0cc0 7932 -cneg 8251 ℕcn 9043 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8026 ax-addrcl 8029 ax-rnegex 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-neg 8253 df-z 9380 |
| This theorem is referenced by: 0zd 9391 nn0ssz 9397 znegcl 9410 nnnle0 9428 zgt0ge1 9438 nn0n0n1ge2b 9459 nn0lt10b 9460 nnm1ge0 9466 gtndiv 9475 msqznn 9480 zeo 9485 nn0ind 9494 fnn0ind 9496 nn0uz 9690 1eluzge0 9702 elnn0dc 9739 eqreznegel 9742 qreccl 9770 qdivcl 9771 irrmul 9775 irrmulap 9776 fz10 10175 fz01en 10182 fzpreddisj 10200 fzshftral 10237 fznn0 10242 fz1ssfz0 10246 fz0sn 10250 fz0tp 10251 fz0to3un2pr 10252 fz0to4untppr 10253 elfz0ubfz0 10254 1fv 10268 fzo0n 10297 lbfzo0 10312 elfzonlteqm1 10346 fzo01 10352 fzo0to2pr 10354 fzo0to3tp 10355 flqge0nn0 10443 divfl0 10446 btwnzge0 10450 modqmulnn 10494 zmodfz 10498 modqid 10501 zmodid2 10504 q0mod 10507 modqmuladdnn0 10520 frecfzennn 10578 xnn0nnen 10589 qexpclz 10712 qsqeqor 10802 facdiv 10890 bcval 10901 bcnn 10909 bcm1k 10912 bcval5 10915 bcpasc 10918 4bc2eq6 10926 hashinfom 10930 iswrd 11003 iswrdiz 11008 wrdexg 11012 wrdfin 11020 wrdnval 11031 wrdred1hash 11044 lsw0 11048 ccatsymb 11066 s111 11093 ccat1st1st 11101 fzowrddc 11108 swrdlen 11113 swrdnd 11120 swrdwrdsymbg 11125 swrds1 11129 pfxval 11135 pfx00g 11136 pfx0g 11137 pfxlen 11144 rexfiuz 11344 qabsor 11430 nn0abscl 11440 nnabscl 11455 climz 11647 climaddc1 11684 climmulc2 11686 climsubc1 11687 climsubc2 11688 climlec2 11696 binomlem 11838 binom 11839 bcxmas 11844 arisum2 11854 explecnv 11860 ef0lem 12015 dvdsval2 12145 dvdsdc 12153 moddvds 12154 dvds0 12161 0dvds 12166 zdvdsdc 12167 dvdscmulr 12175 dvdsmulcr 12176 fsumdvds 12197 dvdslelemd 12198 dvdsabseq 12202 divconjdvds 12204 alzdvds 12209 fzo0dvdseq 12212 odd2np1lem 12227 bitsfzo 12310 bitsmod 12311 0bits 12314 m1bits 12315 bitsinv1lem 12316 bitsinv1 12317 gcdmndc 12320 gcdsupex 12322 gcdsupcl 12323 gcd0val 12325 gcddvds 12328 gcd0id 12344 gcdid0 12345 gcdid 12351 bezoutlema 12364 bezoutlemb 12365 bezoutlembi 12370 dfgcd3 12375 dfgcd2 12379 gcdmultiplez 12386 dvdssq 12396 algcvgblem 12415 lcmmndc 12428 lcm0val 12431 dvdslcm 12435 lcmeq0 12437 lcmgcd 12444 lcmdvds 12445 lcmid 12446 3lcm2e6woprm 12452 6lcm4e12 12453 cncongr2 12470 sqrt2irrap 12546 dfphi2 12586 phiprmpw 12588 crth 12590 phimullem 12591 eulerthlemfi 12594 hashgcdeq 12606 phisum 12607 pceu 12662 pcdiv 12669 pc0 12671 pcqdiv 12674 pcexp 12676 pcxnn0cl 12677 pcxcl 12678 pcxqcl 12679 pcdvdstr 12694 dvdsprmpweqnn 12703 pcaddlem 12706 pcadd 12707 pcfaclem 12716 qexpz 12719 zgz 12740 igz 12741 4sqlem19 12776 ennnfonelemjn 12817 ennnfonelem1 12822 mulg0 13505 subgmulg 13568 zring0 14406 zndvds0 14456 znf1o 14457 znfi 14461 znhash 14462 psr1clfi 14494 plycolemc 15274 rpcxp0 15414 0sgm 15501 1sgmprm 15510 lgslem2 15522 lgsfcl2 15527 lgs0 15534 lgsneg 15545 lgsdilem 15548 lgsdir2lem3 15551 lgsdir 15556 lgsdilem2 15557 lgsdi 15558 lgsne0 15559 lgsprme0 15563 lgsdirnn0 15568 lgsdinn0 15569 apdifflemr 16060 apdiff 16061 iswomni0 16064 nconstwlpolem 16078 |
| Copyright terms: Public domain | W3C validator |