ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix1 GIF version

Theorem 3mix1 1166
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1 (𝜑 → (𝜑𝜓𝜒))

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 712 . 2 (𝜑 → (𝜑 ∨ (𝜓𝜒)))
2 3orass 981 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2sylibr 134 1 (𝜑 → (𝜑𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708  w3o 977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-3or 979
This theorem is referenced by:  3mix2  1167  3mix3  1168  3mix1i  1169  3mix1d  1172  3jaob  1302  nntri3or  6496  exmidontriimlem3  7224  elnn0z  9268  nn0le2is012  9337  nn01to3  9619  fztri3or  10041  zabsle1  14485
  Copyright terms: Public domain W3C validator