| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3mix3 | GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1168 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 986 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: 3mix3i 1173 3mix3d 1176 3jaob 1313 tpid3g 3737 funtpg 5309 exmidontriimlem3 7290 nn0le2is012 9408 nn01to3 9691 fztri3or 10114 qbtwnxr 10347 hashfiv01gt1 10874 |
| Copyright terms: Public domain | W3C validator |