ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix3 GIF version

Theorem 3mix3 1163
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1161 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 979 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 121 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974
This theorem is referenced by:  3mix3i  1166  3mix3d  1169  3jaob  1297  tpid3g  3698  funtpg  5249  exmidontriimlem3  7200  nn0le2is012  9294  nn01to3  9576  fztri3or  9995  qbtwnxr  10214  hashfiv01gt1  10716
  Copyright terms: Public domain W3C validator