ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abai GIF version

Theorem abai 555
Description: Introduce one conjunct as an antecedent to the other. "abai" stands for "and, biconditional, and, implication". (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Assertion
Ref Expression
abai ((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))

Proof of Theorem abai
StepHypRef Expression
1 biimt 240 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21pm5.32i 451 1 ((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  eu2  2063  dfss4st  3360
  Copyright terms: Public domain W3C validator