Step | Hyp | Ref
| Expression |
1 | | eleq1w 2160 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
2 | 1 | stbid 783 |
. . 3
⊢ (𝑥 = 𝑦 → (STAB 𝑥 ∈ 𝐴 ↔ STAB 𝑦 ∈ 𝐴)) |
3 | 2 | cbvalv 1854 |
. 2
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 ↔ ∀𝑦STAB 𝑦 ∈ 𝐴) |
4 | | nfa1 1489 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦STAB 𝑦 ∈ 𝐴 |
5 | | nfcv 2240 |
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∖ (𝐵 ∖ 𝐴)) |
6 | | nfcv 2240 |
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∩ 𝐴) |
7 | | eldif 3030 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴))) |
8 | | elin 3206 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) |
9 | | abai 530 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
10 | 8, 9 | bitri 183 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
11 | | imanst 785 |
. . . . . . . . . 10
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) |
12 | 11 | anbi2d 455 |
. . . . . . . . 9
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) |
13 | 10, 12 | syl5bb 191 |
. . . . . . . 8
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) |
14 | | eldif 3030 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∖ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) |
15 | 14 | notbii 635 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) |
16 | 15 | anbi2i 448 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) |
17 | 13, 16 | syl6rbbr 198 |
. . . . . . 7
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
18 | 7, 17 | syl5bb 191 |
. . . . . 6
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
19 | 18 | sps 1485 |
. . . . 5
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
20 | 4, 5, 6, 19 | eqrd 3065 |
. . . 4
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴)) |
21 | 20 | eqeq1d 2108 |
. . 3
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴)) |
22 | | sseqin2 3242 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
23 | 21, 22 | syl6rbbr 198 |
. 2
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) |
24 | 3, 23 | sylbi 120 |
1
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) |