Step | Hyp | Ref
| Expression |
1 | | eleq1w 2227 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
2 | 1 | stbid 822 |
. . 3
⊢ (𝑥 = 𝑦 → (STAB 𝑥 ∈ 𝐴 ↔ STAB 𝑦 ∈ 𝐴)) |
3 | 2 | cbvalv 1905 |
. 2
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 ↔ ∀𝑦STAB 𝑦 ∈ 𝐴) |
4 | | sseqin2 3341 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
5 | | nfa1 1529 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦STAB 𝑦 ∈ 𝐴 |
6 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∖ (𝐵 ∖ 𝐴)) |
7 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∩ 𝐴) |
8 | | eldif 3125 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴))) |
9 | | eldif 3125 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∖ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) |
10 | 9 | notbii 658 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) |
11 | 10 | anbi2i 453 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) |
12 | | elin 3305 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) |
13 | | abai 550 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
14 | 12, 13 | bitri 183 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
15 | | imanst 878 |
. . . . . . . . . 10
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) |
16 | 15 | anbi2d 460 |
. . . . . . . . 9
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) |
17 | 14, 16 | syl5bb 191 |
. . . . . . . 8
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) |
18 | 11, 17 | bitr4id 198 |
. . . . . . 7
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
19 | 8, 18 | syl5bb 191 |
. . . . . 6
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
20 | 19 | sps 1525 |
. . . . 5
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) |
21 | 5, 6, 7, 20 | eqrd 3160 |
. . . 4
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴)) |
22 | 21 | eqeq1d 2174 |
. . 3
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴)) |
23 | 4, 22 | bitr4id 198 |
. 2
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) |
24 | 3, 23 | sylbi 120 |
1
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) |