| Step | Hyp | Ref
 | Expression | 
| 1 |   | eleq1w 2257 | 
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 2 | 1 | stbid 833 | 
. . 3
⊢ (𝑥 = 𝑦 → (STAB 𝑥 ∈ 𝐴 ↔ STAB 𝑦 ∈ 𝐴)) | 
| 3 | 2 | cbvalv 1932 | 
. 2
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 ↔ ∀𝑦STAB 𝑦 ∈ 𝐴) | 
| 4 |   | sseqin2 3382 | 
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | 
| 5 |   | nfa1 1555 | 
. . . . 5
⊢
Ⅎ𝑦∀𝑦STAB 𝑦 ∈ 𝐴 | 
| 6 |   | nfcv 2339 | 
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∖ (𝐵 ∖ 𝐴)) | 
| 7 |   | nfcv 2339 | 
. . . . 5
⊢
Ⅎ𝑦(𝐵 ∩ 𝐴) | 
| 8 |   | eldif 3166 | 
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴))) | 
| 9 |   | eldif 3166 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∖ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) | 
| 10 | 9 | notbii 669 | 
. . . . . . . . 9
⊢ (¬
𝑦 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) | 
| 11 | 10 | anbi2i 457 | 
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) | 
| 12 |   | elin 3346 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | 
| 13 |   | abai 560 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) | 
| 14 | 12, 13 | bitri 184 | 
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) | 
| 15 |   | imanst 889 | 
. . . . . . . . . 10
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴) ↔ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴))) | 
| 16 | 15 | anbi2d 464 | 
. . . . . . . . 9
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) | 
| 17 | 14, 16 | bitrid 192 | 
. . . . . . . 8
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ ¬ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)))) | 
| 18 | 11, 17 | bitr4id 199 | 
. . . . . . 7
⊢
(STAB 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) | 
| 19 | 8, 18 | bitrid 192 | 
. . . . . 6
⊢
(STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) | 
| 20 | 19 | sps 1551 | 
. . . . 5
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵 ∖ 𝐴)) ↔ 𝑦 ∈ (𝐵 ∩ 𝐴))) | 
| 21 | 5, 6, 7, 20 | eqrd 3201 | 
. . . 4
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴)) | 
| 22 | 21 | eqeq1d 2205 | 
. . 3
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴)) | 
| 23 | 4, 22 | bitr4id 199 | 
. 2
⊢
(∀𝑦STAB 𝑦 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) | 
| 24 | 3, 23 | sylbi 121 | 
1
⊢
(∀𝑥STAB 𝑥 ∈ 𝐴 → (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴)) |