ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss4st GIF version

Theorem dfss4st 3355
Description: Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4st (∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dfss4st
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2227 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21stbid 822 . . 3 (𝑥 = 𝑦 → (STAB 𝑥𝐴STAB 𝑦𝐴))
32cbvalv 1905 . 2 (∀𝑥STAB 𝑥𝐴 ↔ ∀𝑦STAB 𝑦𝐴)
4 sseqin2 3341 . . 3 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
5 nfa1 1529 . . . . 5 𝑦𝑦STAB 𝑦𝐴
6 nfcv 2308 . . . . 5 𝑦(𝐵 ∖ (𝐵𝐴))
7 nfcv 2308 . . . . 5 𝑦(𝐵𝐴)
8 eldif 3125 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)))
9 eldif 3125 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐴))
109notbii 658 . . . . . . . . 9 𝑦 ∈ (𝐵𝐴) ↔ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))
1110anbi2i 453 . . . . . . . 8 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴)))
12 elin 3305 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵𝑦𝐴))
13 abai 550 . . . . . . . . . 10 ((𝑦𝐵𝑦𝐴) ↔ (𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)))
1412, 13bitri 183 . . . . . . . . 9 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)))
15 imanst 878 . . . . . . . . . 10 (STAB 𝑦𝐴 → ((𝑦𝐵𝑦𝐴) ↔ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴)))
1615anbi2d 460 . . . . . . . . 9 (STAB 𝑦𝐴 → ((𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))))
1714, 16syl5bb 191 . . . . . . . 8 (STAB 𝑦𝐴 → (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))))
1811, 17bitr4id 198 . . . . . . 7 (STAB 𝑦𝐴 → ((𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
198, 18syl5bb 191 . . . . . 6 (STAB 𝑦𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
2019sps 1525 . . . . 5 (∀𝑦STAB 𝑦𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
215, 6, 7, 20eqrd 3160 . . . 4 (∀𝑦STAB 𝑦𝐴 → (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴))
2221eqeq1d 2174 . . 3 (∀𝑦STAB 𝑦𝐴 → ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴))
234, 22bitr4id 198 . 2 (∀𝑦STAB 𝑦𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
243, 23sylbi 120 1 (∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  STAB wstab 820  wal 1341   = wceq 1343  wcel 2136  cdif 3113  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-stab 821  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129
This theorem is referenced by:  sbthlemi3  6924
  Copyright terms: Public domain W3C validator