ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss4st GIF version

Theorem dfss4st 3368
Description: Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4st (∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dfss4st
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2238 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21stbid 832 . . 3 (𝑥 = 𝑦 → (STAB 𝑥𝐴STAB 𝑦𝐴))
32cbvalv 1917 . 2 (∀𝑥STAB 𝑥𝐴 ↔ ∀𝑦STAB 𝑦𝐴)
4 sseqin2 3354 . . 3 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
5 nfa1 1541 . . . . 5 𝑦𝑦STAB 𝑦𝐴
6 nfcv 2319 . . . . 5 𝑦(𝐵 ∖ (𝐵𝐴))
7 nfcv 2319 . . . . 5 𝑦(𝐵𝐴)
8 eldif 3138 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)))
9 eldif 3138 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐴))
109notbii 668 . . . . . . . . 9 𝑦 ∈ (𝐵𝐴) ↔ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))
1110anbi2i 457 . . . . . . . 8 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴)))
12 elin 3318 . . . . . . . . . 10 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵𝑦𝐴))
13 abai 560 . . . . . . . . . 10 ((𝑦𝐵𝑦𝐴) ↔ (𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)))
1412, 13bitri 184 . . . . . . . . 9 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)))
15 imanst 888 . . . . . . . . . 10 (STAB 𝑦𝐴 → ((𝑦𝐵𝑦𝐴) ↔ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴)))
1615anbi2d 464 . . . . . . . . 9 (STAB 𝑦𝐴 → ((𝑦𝐵 ∧ (𝑦𝐵𝑦𝐴)) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))))
1714, 16bitrid 192 . . . . . . . 8 (STAB 𝑦𝐴 → (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵 ∧ ¬ (𝑦𝐵 ∧ ¬ 𝑦𝐴))))
1811, 17bitr4id 199 . . . . . . 7 (STAB 𝑦𝐴 → ((𝑦𝐵 ∧ ¬ 𝑦 ∈ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
198, 18bitrid 192 . . . . . 6 (STAB 𝑦𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
2019sps 1537 . . . . 5 (∀𝑦STAB 𝑦𝐴 → (𝑦 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑦 ∈ (𝐵𝐴)))
215, 6, 7, 20eqrd 3173 . . . 4 (∀𝑦STAB 𝑦𝐴 → (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴))
2221eqeq1d 2186 . . 3 (∀𝑦STAB 𝑦𝐴 → ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴))
234, 22bitr4id 199 . 2 (∀𝑦STAB 𝑦𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
243, 23sylbi 121 1 (∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  STAB wstab 830  wal 1351   = wceq 1353  wcel 2148  cdif 3126  cin 3128  wss 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-stab 831  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131  df-in 3135  df-ss 3142
This theorem is referenced by:  sbthlemi3  6952
  Copyright terms: Public domain W3C validator