Proof of Theorem eu2
| Step | Hyp | Ref
| Expression |
| 1 | | euex 2075 |
. . 3
⊢
(∃!𝑥𝜑 → ∃𝑥𝜑) |
| 2 | | eu2.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 3 | 2 | nfri 1533 |
. . . . 5
⊢ (𝜑 → ∀𝑦𝜑) |
| 4 | 3 | eumo0 2076 |
. . . 4
⊢
(∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | 2 | mo23 2086 |
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 6 | 4, 5 | syl 14 |
. . 3
⊢
(∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 7 | 1, 6 | jca 306 |
. 2
⊢
(∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 8 | | 19.29r 1635 |
. . . 4
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 9 | | impexp 263 |
. . . . . . . . 9
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 10 | 9 | albii 1484 |
. . . . . . . 8
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 11 | 2 | 19.21 1597 |
. . . . . . . 8
⊢
(∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 12 | 10, 11 | bitri 184 |
. . . . . . 7
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 13 | 12 | anbi2i 457 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) |
| 14 | | abai 560 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) |
| 15 | 13, 14 | bitr4i 187 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 16 | 15 | exbii 1619 |
. . . 4
⊢
(∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 17 | 8, 16 | sylib 122 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 18 | 3 | eu1 2070 |
. . 3
⊢
(∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 19 | 17, 18 | sylibr 134 |
. 2
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃!𝑥𝜑) |
| 20 | 7, 19 | impbii 126 |
1
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |