Proof of Theorem eu2
Step | Hyp | Ref
| Expression |
1 | | euex 2044 |
. . 3
⊢
(∃!𝑥𝜑 → ∃𝑥𝜑) |
2 | | eu2.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
3 | 2 | nfri 1507 |
. . . . 5
⊢ (𝜑 → ∀𝑦𝜑) |
4 | 3 | eumo0 2045 |
. . . 4
⊢
(∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | 2 | mo23 2055 |
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
6 | 4, 5 | syl 14 |
. . 3
⊢
(∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
7 | 1, 6 | jca 304 |
. 2
⊢
(∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
8 | | 19.29r 1609 |
. . . 4
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
9 | | impexp 261 |
. . . . . . . . 9
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
10 | 9 | albii 1458 |
. . . . . . . 8
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
11 | 2 | 19.21 1571 |
. . . . . . . 8
⊢
(∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
12 | 10, 11 | bitri 183 |
. . . . . . 7
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
13 | 12 | anbi2i 453 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) |
14 | | abai 550 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) |
15 | 13, 14 | bitr4i 186 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
16 | 15 | exbii 1593 |
. . . 4
⊢
(∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
17 | 8, 16 | sylib 121 |
. . 3
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
18 | 3 | eu1 2039 |
. . 3
⊢
(∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
19 | 17, 18 | sylibr 133 |
. 2
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃!𝑥𝜑) |
20 | 7, 19 | impbii 125 |
1
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |