ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu2 GIF version

Theorem eu2 2043
Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu2.1 𝑦𝜑
Assertion
Ref Expression
eu2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu2
StepHypRef Expression
1 euex 2029 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
2 eu2.1 . . . . . 6 𝑦𝜑
32nfri 1499 . . . . 5 (𝜑 → ∀𝑦𝜑)
43eumo0 2030 . . . 4 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
52mo23 2040 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
64, 5syl 14 . . 3 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
71, 6jca 304 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 19.29r 1600 . . . 4 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
9 impexp 261 . . . . . . . . 9 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
109albii 1446 . . . . . . . 8 (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
11219.21 1562 . . . . . . . 8 (∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1210, 11bitri 183 . . . . . . 7 (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1312anbi2i 452 . . . . . 6 ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦))))
14 abai 549 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦))))
1513, 14bitr4i 186 . . . . 5 ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1615exbii 1584 . . . 4 (∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
178, 16sylib 121 . . 3 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
183eu1 2024 . . 3 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1917, 18sylibr 133 . 2 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃!𝑥𝜑)
207, 19impbii 125 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329  wnf 1436  wex 1468  [wsb 1735  ∃!weu 1999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-eu 2002
This theorem is referenced by:  eu3h  2044  mo3h  2052  bm1.1  2124  reu2  2872
  Copyright terms: Public domain W3C validator