ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu2 GIF version

Theorem eu2 1993
Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu2.1 𝑦𝜑
Assertion
Ref Expression
eu2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu2
StepHypRef Expression
1 euex 1979 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
2 eu2.1 . . . . . 6 𝑦𝜑
32nfri 1458 . . . . 5 (𝜑 → ∀𝑦𝜑)
43eumo0 1980 . . . 4 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
52mo23 1990 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
64, 5syl 14 . . 3 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
71, 6jca 301 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
8 19.29r 1558 . . . 4 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
9 impexp 260 . . . . . . . . 9 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
109albii 1405 . . . . . . . 8 (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
11219.21 1521 . . . . . . . 8 (∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1210, 11bitri 183 . . . . . . 7 (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1312anbi2i 446 . . . . . 6 ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦))))
14 abai 528 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦))))
1513, 14bitr4i 186 . . . . 5 ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1615exbii 1542 . . . 4 (∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
178, 16sylib 121 . . 3 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
183eu1 1974 . . 3 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
1917, 18sylibr 133 . 2 ((∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃!𝑥𝜑)
207, 19impbii 125 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1288  wnf 1395  wex 1427  [wsb 1693  ∃!weu 1949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-eu 1952
This theorem is referenced by:  eu3h  1994  mo3h  2002  bm1.1  2074  reu2  2804
  Copyright terms: Public domain W3C validator