Proof of Theorem eu2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | euex 2075 | 
. . 3
⊢
(∃!𝑥𝜑 → ∃𝑥𝜑) | 
| 2 |   | eu2.1 | 
. . . . . 6
⊢
Ⅎ𝑦𝜑 | 
| 3 | 2 | nfri 1533 | 
. . . . 5
⊢ (𝜑 → ∀𝑦𝜑) | 
| 4 | 3 | eumo0 2076 | 
. . . 4
⊢
(∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 5 | 2 | mo23 2086 | 
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 6 | 4, 5 | syl 14 | 
. . 3
⊢
(∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 7 | 1, 6 | jca 306 | 
. 2
⊢
(∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 8 |   | 19.29r 1635 | 
. . . 4
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | 
| 9 |   | impexp 263 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 10 | 9 | albii 1484 | 
. . . . . . . 8
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 11 | 2 | 19.21 1597 | 
. . . . . . . 8
⊢
(∀𝑦(𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 12 | 10, 11 | bitri 184 | 
. . . . . . 7
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 13 | 12 | anbi2i 457 | 
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) | 
| 14 |   | abai 560 | 
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (𝜑 ∧ (𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)))) | 
| 15 | 13, 14 | bitr4i 187 | 
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 16 | 15 | exbii 1619 | 
. . . 4
⊢
(∃𝑥(𝜑 ∧ ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 17 | 8, 16 | sylib 122 | 
. . 3
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 18 | 3 | eu1 2070 | 
. . 3
⊢
(∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 19 | 17, 18 | sylibr 134 | 
. 2
⊢
((∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) → ∃!𝑥𝜑) | 
| 20 | 7, 19 | impbii 126 | 
1
⊢
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |