ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 GIF version

Theorem an12 556
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem an12
StepHypRef Expression
1 ancom 264 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21anbi1i 455 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
3 anass 399 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
4 anass 399 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
52, 3, 43bitr3i 209 1 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an32  557  an13  558  an12s  560  an4  581  ceqsrexv  2860  rmoan  2930  2reuswapdc  2934  reuind  2935  2rmorex  2936  sbccomlem  3029  elunirab  3809  rexxfrd  4448  opeliunxp  4666  elres  4927  resoprab  5949  ov6g  5990  opabex3d  6100  opabex3  6101  xpassen  6808  distrnqg  7349  distrnq0  7421  rexuz2  9540  2clim  11264  isbasis2g  12837  tgval2  12845
  Copyright terms: Public domain W3C validator