ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 GIF version

Theorem an12 551
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem an12
StepHypRef Expression
1 ancom 264 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21anbi1i 454 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
3 anass 399 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
4 anass 399 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
52, 3, 43bitr3i 209 1 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an32  552  an13  553  an12s  555  an4  576  ceqsrexv  2856  rmoan  2926  2reuswapdc  2930  reuind  2931  2rmorex  2932  sbccomlem  3025  elunirab  3802  rexxfrd  4441  opeliunxp  4659  elres  4920  resoprab  5938  ov6g  5979  opabex3d  6089  opabex3  6090  xpassen  6796  distrnqg  7328  distrnq0  7400  rexuz2  9519  2clim  11242  isbasis2g  12683  tgval2  12691
  Copyright terms: Public domain W3C validator