ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 GIF version

Theorem an12 561
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem an12
StepHypRef Expression
1 ancom 266 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21anbi1i 458 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
3 anass 401 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
4 anass 401 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
52, 3, 43bitr3i 210 1 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32  562  an13  563  an12s  565  an4  586  ceqsrexv  2905  rmoan  2975  2reuswapdc  2979  reuind  2980  2rmorex  2981  sbccomlem  3075  elunirab  3866  rexxfrd  4515  opeliunxp  4735  elres  5001  resoprab  6051  ov6g  6094  opabex3d  6216  opabex3  6217  xpassen  6937  distrnqg  7513  distrnq0  7585  rexuz2  9715  2clim  11662  bitsmod  12317  issubrg  14033  isbasis2g  14567  tgval2  14573
  Copyright terms: Public domain W3C validator