| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an12 | GIF version | ||
| Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | anbi1i 458 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) |
| 3 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 4 | anass 401 | . 2 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 5 | 2, 3, 4 | 3bitr3i 210 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an32 562 an13 563 an12s 565 an4 586 ceqsrexv 2894 rmoan 2964 2reuswapdc 2968 reuind 2969 2rmorex 2970 sbccomlem 3064 elunirab 3853 rexxfrd 4499 opeliunxp 4719 elres 4983 resoprab 6022 ov6g 6065 opabex3d 6187 opabex3 6188 xpassen 6898 distrnqg 7473 distrnq0 7545 rexuz2 9674 2clim 11485 bitsmod 12140 issubrg 13855 isbasis2g 14389 tgval2 14395 |
| Copyright terms: Public domain | W3C validator |