ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 GIF version

Theorem an12 561
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem an12
StepHypRef Expression
1 ancom 266 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21anbi1i 458 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜓𝜑) ∧ 𝜒))
3 anass 401 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
4 anass 401 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
52, 3, 43bitr3i 210 1 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32  562  an13  563  an12s  565  an4  586  ceqsrexv  2933  rmoan  3003  2reuswapdc  3007  reuind  3008  2rmorex  3009  sbccomlem  3103  elunirab  3900  rexxfrd  4551  opeliunxp  4771  elres  5037  resoprab  6091  ov6g  6134  opabex3d  6256  opabex3  6257  xpassen  6977  distrnqg  7562  distrnq0  7634  rexuz2  9764  2clim  11798  bitsmod  12453  issubrg  14170  isbasis2g  14704  tgval2  14710
  Copyright terms: Public domain W3C validator