| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2256 rexbiia 2512 reubiia 2682 rmobiia 2687 rabbiia 2748 ceqsrexbv 2895 euxfrdc 2950 eldifpr 3649 eldiftp 3668 eldifsn 3749 elrint 3914 elriin 3987 opeqsn 4285 rabxp 4700 eliunxp 4805 restidsing 5002 ressn 5210 fncnv 5324 dff1o5 5513 respreima 5690 dff4im 5708 dffo3 5709 f1ompt 5713 fsn 5734 fconst3m 5781 fconst4m 5782 eufnfv 5793 dff13 5815 f1mpt 5818 isores2 5860 isoini 5865 eloprabga 6009 mpomptx 6013 resoprab 6018 ov6g 6061 dfopab2 6247 dfoprab3s 6248 dfoprab3 6249 f1od2 6293 brtpos2 6309 dftpos3 6320 tpostpos 6322 dfsmo2 6345 elixp2 6761 mapsnen 6870 xpcomco 6885 eqinfti 7086 dfplpq2 7421 dfmpq2 7422 enq0enq 7498 nqnq0a 7521 nqnq0m 7522 genpassl 7591 genpassu 7592 axsuploc 8099 recexre 8605 recexgt0 8607 reapmul1 8622 apsqgt0 8628 apreim 8630 recexaplem2 8679 rerecclap 8757 elznn0 9341 elznn 9342 msqznn 9426 eluz2b1 9675 eluz2b3 9678 qreccl 9716 rpnegap 9761 elfz2nn0 10187 elfzo3 10239 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 qexpclz 10652 shftidt2 10997 clim0 11450 iser3shft 11511 summodclem3 11545 fprod2dlemstep 11787 eftlub 11855 ndvdsadd 12096 algfx 12220 isprm3 12286 isprm5 12310 xpsfrnel 12987 isabl2 13424 dvdsrcl2 13655 unitinvcl 13679 unitinvinv 13680 unitlinv 13682 unitrinv 13683 isrim 13725 isnzr2 13740 islmod 13847 isridl 14060 cnfldui 14145 ssntr 14358 tx1cn 14505 tx2cn 14506 pilem1 15015 lgsdir2lem4 15272 | 
| Copyright terms: Public domain | W3C validator |