| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2266 rexbiia 2522 reubiia 2692 rmobiia 2697 rabbiia 2758 ceqsrexbv 2906 euxfrdc 2961 eldifpr 3662 eldiftp 3681 eldifsn 3763 elrint 3928 elriin 4001 opeqsn 4302 rabxp 4717 eliunxp 4822 restidsing 5021 ressn 5229 fncnv 5346 dff1o5 5540 respreima 5718 dff4im 5736 dffo3 5737 f1ompt 5741 fsn 5762 fconst3m 5813 fconst4m 5814 eufnfv 5825 dff13 5847 f1mpt 5850 isores2 5892 isoini 5897 eloprabga 6042 mpomptx 6046 resoprab 6051 ov6g 6094 dfopab2 6285 dfoprab3s 6286 dfoprab3 6287 f1od2 6331 brtpos2 6347 dftpos3 6358 tpostpos 6360 dfsmo2 6383 elixp2 6799 mapsnen 6914 xpcomco 6933 eqinfti 7134 dfplpq2 7480 dfmpq2 7481 enq0enq 7557 nqnq0a 7580 nqnq0m 7581 genpassl 7650 genpassu 7651 axsuploc 8158 recexre 8664 recexgt0 8666 reapmul1 8681 apsqgt0 8687 apreim 8689 recexaplem2 8738 rerecclap 8816 elznn0 9400 elznn 9401 msqznn 9486 eluz2b1 9735 eluz2b3 9738 qreccl 9776 rpnegap 9821 elfz2nn0 10247 elfzo3 10299 frecuzrdgtcl 10570 frecuzrdgfunlem 10577 qexpclz 10718 shftidt2 11193 clim0 11646 iser3shft 11707 summodclem3 11741 fprod2dlemstep 11983 eftlub 12051 ndvdsadd 12292 algfx 12424 isprm3 12490 isprm5 12514 xpsfrnel 13226 isabl2 13680 dvdsrcl2 13911 unitinvcl 13935 unitinvinv 13936 unitlinv 13938 unitrinv 13939 isrim 13981 isnzr2 13996 islmod 14103 isridl 14316 cnfldui 14401 ssntr 14644 tx1cn 14791 tx2cn 14792 pilem1 15301 lgsdir2lem4 15558 |
| Copyright terms: Public domain | W3C validator |