| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 611 eq2tri 2289 rexbiia 2545 reubiia 2717 rmobiia 2722 rabbiia 2784 ceqsrexbv 2934 euxfrdc 2989 eldifpr 3693 eldiftp 3712 eldifsn 3795 elrint 3963 elriin 4036 opeqsn 4339 rabxp 4756 eliunxp 4861 restidsing 5061 ressn 5269 fncnv 5387 dff1o5 5583 respreima 5765 dff4im 5783 dffo3 5784 f1ompt 5788 fsn 5809 fconst3m 5862 fconst4m 5863 eufnfv 5874 dff13 5898 f1mpt 5901 isores2 5943 isoini 5948 eloprabga 6097 mpomptx 6101 resoprab 6106 ov6g 6149 dfopab2 6341 dfoprab3s 6342 dfoprab3 6343 f1od2 6387 brtpos2 6403 dftpos3 6414 tpostpos 6416 dfsmo2 6439 elixp2 6857 mapsnen 6972 xpcomco 6993 eqinfti 7195 dfplpq2 7549 dfmpq2 7550 enq0enq 7626 nqnq0a 7649 nqnq0m 7650 genpassl 7719 genpassu 7720 axsuploc 8227 recexre 8733 recexgt0 8735 reapmul1 8750 apsqgt0 8756 apreim 8758 recexaplem2 8807 rerecclap 8885 elznn0 9469 elznn 9470 msqznn 9555 eluz2b1 9804 eluz2b3 9807 qreccl 9845 rpnegap 9890 elfz2nn0 10316 elfzo3 10368 frecuzrdgtcl 10642 frecuzrdgfunlem 10649 qexpclz 10790 shftidt2 11351 clim0 11804 iser3shft 11865 summodclem3 11899 fprod2dlemstep 12141 eftlub 12209 ndvdsadd 12450 algfx 12582 isprm3 12648 isprm5 12672 xpsfrnel 13385 isabl2 13839 dvdsrcl2 14071 unitinvcl 14095 unitinvinv 14096 unitlinv 14098 unitrinv 14099 isrim 14141 isnzr2 14156 islmod 14263 isridl 14476 cnfldui 14561 ssntr 14804 tx1cn 14951 tx2cn 14952 pilem1 15461 lgsdir2lem4 15718 |
| Copyright terms: Public domain | W3C validator |