Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.32 449 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32ri 451 biadan2 452 anbi2i 453 abai 550 anabs5 563 pm5.33 599 eq2tri 2214 rexbiia 2469 reubiia 2638 rmobiia 2643 rabbiia 2694 ceqsrexbv 2840 euxfrdc 2894 eldifpr 3583 eldiftp 3601 eldifsn 3682 elrint 3843 elriin 3915 opeqsn 4207 rabxp 4616 eliunxp 4718 ressn 5119 fncnv 5229 dff1o5 5416 respreima 5588 dff4im 5606 dffo3 5607 f1ompt 5611 fsn 5632 fconst3m 5679 fconst4m 5680 eufnfv 5688 dff13 5709 f1mpt 5712 isores2 5754 isoini 5759 eloprabga 5898 mpomptx 5902 resoprab 5907 ov6g 5948 dfopab2 6127 dfoprab3s 6128 dfoprab3 6129 f1od2 6172 brtpos2 6188 dftpos3 6199 tpostpos 6201 dfsmo2 6224 elixp2 6636 mapsnen 6745 xpcomco 6760 eqinfti 6952 dfplpq2 7253 dfmpq2 7254 enq0enq 7330 nqnq0a 7353 nqnq0m 7354 genpassl 7423 genpassu 7424 axsuploc 7929 recexre 8432 recexgt0 8434 reapmul1 8449 apsqgt0 8455 apreim 8457 recexaplem2 8505 rerecclap 8582 elznn0 9161 elznn 9162 msqznn 9243 eluz2b1 9490 eluz2b3 9493 qreccl 9529 rpnegap 9571 elfz2nn0 9992 elfzo3 10040 frecuzrdgtcl 10289 frecuzrdgfunlem 10296 qexpclz 10418 shftidt2 10709 clim0 11159 iser3shft 11220 summodclem3 11254 fprod2dlemstep 11496 eftlub 11564 ndvdsadd 11795 algfx 11900 isprm3 11966 ssntr 12461 tx1cn 12608 tx2cn 12609 pilem1 13039 |
Copyright terms: Public domain | W3C validator |