![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2253 rexbiia 2509 reubiia 2679 rmobiia 2684 rabbiia 2745 ceqsrexbv 2892 euxfrdc 2947 eldifpr 3646 eldiftp 3665 eldifsn 3746 elrint 3911 elriin 3984 opeqsn 4282 rabxp 4697 eliunxp 4802 restidsing 4999 ressn 5207 fncnv 5321 dff1o5 5510 respreima 5687 dff4im 5705 dffo3 5706 f1ompt 5710 fsn 5731 fconst3m 5778 fconst4m 5779 eufnfv 5790 dff13 5812 f1mpt 5815 isores2 5857 isoini 5862 eloprabga 6006 mpomptx 6010 resoprab 6015 ov6g 6058 dfopab2 6244 dfoprab3s 6245 dfoprab3 6246 f1od2 6290 brtpos2 6306 dftpos3 6317 tpostpos 6319 dfsmo2 6342 elixp2 6758 mapsnen 6867 xpcomco 6882 eqinfti 7081 dfplpq2 7416 dfmpq2 7417 enq0enq 7493 nqnq0a 7516 nqnq0m 7517 genpassl 7586 genpassu 7587 axsuploc 8094 recexre 8599 recexgt0 8601 reapmul1 8616 apsqgt0 8622 apreim 8624 recexaplem2 8673 rerecclap 8751 elznn0 9335 elznn 9336 msqznn 9420 eluz2b1 9669 eluz2b3 9672 qreccl 9710 rpnegap 9755 elfz2nn0 10181 elfzo3 10233 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 qexpclz 10634 shftidt2 10979 clim0 11431 iser3shft 11492 summodclem3 11526 fprod2dlemstep 11768 eftlub 11836 ndvdsadd 12075 algfx 12193 isprm3 12259 isprm5 12283 xpsfrnel 12930 isabl2 13367 dvdsrcl2 13598 unitinvcl 13622 unitinvinv 13623 unitlinv 13625 unitrinv 13626 isrim 13668 isnzr2 13683 islmod 13790 isridl 14003 cnfldui 14088 ssntr 14301 tx1cn 14448 tx2cn 14449 pilem1 14955 lgsdir2lem4 15188 |
Copyright terms: Public domain | W3C validator |