![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2237 rexbiia 2492 reubiia 2662 rmobiia 2667 rabbiia 2724 ceqsrexbv 2870 euxfrdc 2925 eldifpr 3621 eldiftp 3640 eldifsn 3721 elrint 3886 elriin 3959 opeqsn 4254 rabxp 4665 eliunxp 4768 restidsing 4965 ressn 5171 fncnv 5284 dff1o5 5472 respreima 5646 dff4im 5664 dffo3 5665 f1ompt 5669 fsn 5690 fconst3m 5737 fconst4m 5738 eufnfv 5749 dff13 5771 f1mpt 5774 isores2 5816 isoini 5821 eloprabga 5964 mpomptx 5968 resoprab 5973 ov6g 6014 dfopab2 6192 dfoprab3s 6193 dfoprab3 6194 f1od2 6238 brtpos2 6254 dftpos3 6265 tpostpos 6267 dfsmo2 6290 elixp2 6704 mapsnen 6813 xpcomco 6828 eqinfti 7021 dfplpq2 7355 dfmpq2 7356 enq0enq 7432 nqnq0a 7455 nqnq0m 7456 genpassl 7525 genpassu 7526 axsuploc 8032 recexre 8537 recexgt0 8539 reapmul1 8554 apsqgt0 8560 apreim 8562 recexaplem2 8611 rerecclap 8689 elznn0 9270 elznn 9271 msqznn 9355 eluz2b1 9603 eluz2b3 9606 qreccl 9644 rpnegap 9688 elfz2nn0 10114 elfzo3 10165 frecuzrdgtcl 10414 frecuzrdgfunlem 10421 qexpclz 10543 shftidt2 10843 clim0 11295 iser3shft 11356 summodclem3 11390 fprod2dlemstep 11632 eftlub 11700 ndvdsadd 11938 algfx 12054 isprm3 12120 isprm5 12144 xpsfrnel 12768 isabl2 13102 dvdsrcl2 13273 unitinvcl 13297 unitinvinv 13298 unitlinv 13300 unitrinv 13301 islmod 13386 ssntr 13661 tx1cn 13808 tx2cn 13809 pilem1 14239 lgsdir2lem4 14471 |
Copyright terms: Public domain | W3C validator |