Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.32 450 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32ri 452 biadan2 453 anbi2i 454 abai 555 anabs5 568 pm5.33 604 eq2tri 2230 rexbiia 2485 reubiia 2654 rmobiia 2659 rabbiia 2715 ceqsrexbv 2861 euxfrdc 2916 eldifpr 3610 eldiftp 3629 eldifsn 3710 elrint 3871 elriin 3943 opeqsn 4237 rabxp 4648 eliunxp 4750 ressn 5151 fncnv 5264 dff1o5 5451 respreima 5624 dff4im 5642 dffo3 5643 f1ompt 5647 fsn 5668 fconst3m 5715 fconst4m 5716 eufnfv 5726 dff13 5747 f1mpt 5750 isores2 5792 isoini 5797 eloprabga 5940 mpomptx 5944 resoprab 5949 ov6g 5990 dfopab2 6168 dfoprab3s 6169 dfoprab3 6170 f1od2 6214 brtpos2 6230 dftpos3 6241 tpostpos 6243 dfsmo2 6266 elixp2 6680 mapsnen 6789 xpcomco 6804 eqinfti 6997 dfplpq2 7316 dfmpq2 7317 enq0enq 7393 nqnq0a 7416 nqnq0m 7417 genpassl 7486 genpassu 7487 axsuploc 7992 recexre 8497 recexgt0 8499 reapmul1 8514 apsqgt0 8520 apreim 8522 recexaplem2 8570 rerecclap 8647 elznn0 9227 elznn 9228 msqznn 9312 eluz2b1 9560 eluz2b3 9563 qreccl 9601 rpnegap 9643 elfz2nn0 10068 elfzo3 10119 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 qexpclz 10497 shftidt2 10796 clim0 11248 iser3shft 11309 summodclem3 11343 fprod2dlemstep 11585 eftlub 11653 ndvdsadd 11890 algfx 12006 isprm3 12072 isprm5 12096 ssntr 12916 tx1cn 13063 tx2cn 13064 pilem1 13494 lgsdir2lem4 13726 |
Copyright terms: Public domain | W3C validator |