| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 611 eq2tri 2289 rexbiia 2545 reubiia 2717 rmobiia 2722 rabbiia 2784 ceqsrexbv 2934 euxfrdc 2989 eldifpr 3693 eldiftp 3712 eldifsn 3794 elrint 3962 elriin 4035 opeqsn 4338 rabxp 4753 eliunxp 4858 restidsing 5057 ressn 5265 fncnv 5383 dff1o5 5577 respreima 5756 dff4im 5774 dffo3 5775 f1ompt 5779 fsn 5800 fconst3m 5851 fconst4m 5852 eufnfv 5863 dff13 5885 f1mpt 5888 isores2 5930 isoini 5935 eloprabga 6082 mpomptx 6086 resoprab 6091 ov6g 6134 dfopab2 6325 dfoprab3s 6326 dfoprab3 6327 f1od2 6371 brtpos2 6387 dftpos3 6398 tpostpos 6400 dfsmo2 6423 elixp2 6839 mapsnen 6954 xpcomco 6973 eqinfti 7175 dfplpq2 7529 dfmpq2 7530 enq0enq 7606 nqnq0a 7629 nqnq0m 7630 genpassl 7699 genpassu 7700 axsuploc 8207 recexre 8713 recexgt0 8715 reapmul1 8730 apsqgt0 8736 apreim 8738 recexaplem2 8787 rerecclap 8865 elznn0 9449 elznn 9450 msqznn 9535 eluz2b1 9784 eluz2b3 9787 qreccl 9825 rpnegap 9870 elfz2nn0 10296 elfzo3 10348 frecuzrdgtcl 10621 frecuzrdgfunlem 10628 qexpclz 10769 shftidt2 11329 clim0 11782 iser3shft 11843 summodclem3 11877 fprod2dlemstep 12119 eftlub 12187 ndvdsadd 12428 algfx 12560 isprm3 12626 isprm5 12650 xpsfrnel 13363 isabl2 13817 dvdsrcl2 14048 unitinvcl 14072 unitinvinv 14073 unitlinv 14075 unitrinv 14076 isrim 14118 isnzr2 14133 islmod 14240 isridl 14453 cnfldui 14538 ssntr 14781 tx1cn 14928 tx2cn 14929 pilem1 15438 lgsdir2lem4 15695 |
| Copyright terms: Public domain | W3C validator |