Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.32 449 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32ri 451 biadan2 452 anbi2i 453 abai 550 anabs5 563 pm5.33 599 eq2tri 2226 rexbiia 2481 reubiia 2650 rmobiia 2655 rabbiia 2711 ceqsrexbv 2857 euxfrdc 2912 eldifpr 3603 eldiftp 3622 eldifsn 3703 elrint 3864 elriin 3936 opeqsn 4230 rabxp 4641 eliunxp 4743 ressn 5144 fncnv 5254 dff1o5 5441 respreima 5613 dff4im 5631 dffo3 5632 f1ompt 5636 fsn 5657 fconst3m 5704 fconst4m 5705 eufnfv 5715 dff13 5736 f1mpt 5739 isores2 5781 isoini 5786 eloprabga 5929 mpomptx 5933 resoprab 5938 ov6g 5979 dfopab2 6157 dfoprab3s 6158 dfoprab3 6159 f1od2 6203 brtpos2 6219 dftpos3 6230 tpostpos 6232 dfsmo2 6255 elixp2 6668 mapsnen 6777 xpcomco 6792 eqinfti 6985 dfplpq2 7295 dfmpq2 7296 enq0enq 7372 nqnq0a 7395 nqnq0m 7396 genpassl 7465 genpassu 7466 axsuploc 7971 recexre 8476 recexgt0 8478 reapmul1 8493 apsqgt0 8499 apreim 8501 recexaplem2 8549 rerecclap 8626 elznn0 9206 elznn 9207 msqznn 9291 eluz2b1 9539 eluz2b3 9542 qreccl 9580 rpnegap 9622 elfz2nn0 10047 elfzo3 10098 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 qexpclz 10476 shftidt2 10774 clim0 11226 iser3shft 11287 summodclem3 11321 fprod2dlemstep 11563 eftlub 11631 ndvdsadd 11868 algfx 11984 isprm3 12050 isprm5 12074 ssntr 12762 tx1cn 12909 tx2cn 12910 pilem1 13340 lgsdir2lem4 13572 |
Copyright terms: Public domain | W3C validator |