| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32i | GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.32i | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.32 453 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32ri 455 biadan2 456 anbi2i 457 abai 560 anabs5 573 pm5.33 609 eq2tri 2256 rexbiia 2512 reubiia 2682 rmobiia 2687 rabbiia 2748 ceqsrexbv 2895 euxfrdc 2950 eldifpr 3650 eldiftp 3669 eldifsn 3750 elrint 3915 elriin 3988 opeqsn 4286 rabxp 4701 eliunxp 4806 restidsing 5003 ressn 5211 fncnv 5325 dff1o5 5516 respreima 5693 dff4im 5711 dffo3 5712 f1ompt 5716 fsn 5737 fconst3m 5784 fconst4m 5785 eufnfv 5796 dff13 5818 f1mpt 5821 isores2 5863 isoini 5868 eloprabga 6013 mpomptx 6017 resoprab 6022 ov6g 6065 dfopab2 6256 dfoprab3s 6257 dfoprab3 6258 f1od2 6302 brtpos2 6318 dftpos3 6329 tpostpos 6331 dfsmo2 6354 elixp2 6770 mapsnen 6879 xpcomco 6894 eqinfti 7095 dfplpq2 7440 dfmpq2 7441 enq0enq 7517 nqnq0a 7540 nqnq0m 7541 genpassl 7610 genpassu 7611 axsuploc 8118 recexre 8624 recexgt0 8626 reapmul1 8641 apsqgt0 8647 apreim 8649 recexaplem2 8698 rerecclap 8776 elznn0 9360 elznn 9361 msqznn 9445 eluz2b1 9694 eluz2b3 9697 qreccl 9735 rpnegap 9780 elfz2nn0 10206 elfzo3 10258 frecuzrdgtcl 10523 frecuzrdgfunlem 10530 qexpclz 10671 shftidt2 11016 clim0 11469 iser3shft 11530 summodclem3 11564 fprod2dlemstep 11806 eftlub 11874 ndvdsadd 12115 algfx 12247 isprm3 12313 isprm5 12337 xpsfrnel 13048 isabl2 13502 dvdsrcl2 13733 unitinvcl 13757 unitinvinv 13758 unitlinv 13760 unitrinv 13761 isrim 13803 isnzr2 13818 islmod 13925 isridl 14138 cnfldui 14223 ssntr 14466 tx1cn 14613 tx2cn 14614 pilem1 15123 lgsdir2lem4 15380 |
| Copyright terms: Public domain | W3C validator |