![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcnnOLD 850 excxor 1389 sbequ8 1858 2sb5 1999 2sb6 2000 2sb5rf 2005 2sb6rf 2006 moabs 2091 moanim 2116 2eu4 2135 2eu7 2136 sb8ab 2315 risset 2522 cbvreuvw 2732 reuind 2966 difundi 3412 indifdir 3416 unab 3427 inab 3428 rabeq0 3477 abeq0 3478 inssdif0im 3515 snprc 3684 snssOLD 3745 unipr 3850 uni0b 3861 pwtr 4249 opm 4264 onintexmid 4606 elxp2 4678 opthprc 4711 xpiundir 4719 elvvv 4723 relun 4777 inopab 4795 difopab 4796 ralxpf 4809 rexxpf 4810 dmiun 4872 rniun 5077 cnvresima 5156 imaco 5172 fnopabg 5378 dff1o2 5506 idref 5800 imaiun 5804 opabex3d 6175 opabex3 6176 onntri35 7299 elixx3g 9970 elfz2 10084 elfzuzb 10088 divalgb 12069 1nprm 12255 issubg3 13265 cnfldui 14088 alsconv 15640 |
Copyright terms: Public domain | W3C validator |