| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 854 excxor 1420 sbequ8 1893 2sb5 2034 2sb6 2035 2sb5rf 2040 2sb6rf 2041 moabs 2127 moanim 2152 2eu4 2171 2eu7 2172 sb8ab 2351 risset 2558 cbvreuvw 2771 reuind 3008 difundi 3456 indifdir 3460 unab 3471 inab 3472 rabeq0 3521 abeq0 3522 inssdif0im 3559 snprc 3731 snssOLD 3793 unipr 3901 uni0b 3912 pwtr 4304 opm 4319 onintexmid 4662 elxp2 4734 opthprc 4767 xpiundir 4775 elvvv 4779 relun 4833 inopab 4851 difopab 4852 ralxpf 4865 rexxpf 4866 dmiun 4929 rniun 5135 cnvresima 5214 imaco 5230 fnopabg 5443 dff1o2 5573 idref 5873 imaiun 5877 opabex3d 6256 opabex3 6257 onntri35 7410 elixx3g 10085 elfz2 10199 elfzuzb 10203 divalgb 12422 1nprm 12622 issubg3 13715 cnfldui 14538 alsconv 16379 |
| Copyright terms: Public domain | W3C validator |