| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 854 excxor 1420 sbequ8 1893 2sb5 2034 2sb6 2035 2sb5rf 2040 2sb6rf 2041 moabs 2127 moanim 2152 2eu4 2171 2eu7 2172 sb8ab 2351 risset 2558 cbvreuvw 2771 reuind 3008 difundi 3456 indifdir 3460 unab 3471 inab 3472 rabeq0 3521 abeq0 3522 inssdif0im 3559 snprc 3731 snssOLD 3794 unipr 3902 uni0b 3913 pwtr 4305 opm 4320 onintexmid 4665 elxp2 4737 opthprc 4770 xpiundir 4778 elvvv 4782 relun 4836 inopab 4854 difopab 4855 ralxpf 4868 rexxpf 4869 dmiun 4932 rniun 5139 cnvresima 5218 imaco 5234 fnopabg 5447 dff1o2 5579 idref 5886 imaiun 5890 opabex3d 6272 opabex3 6273 onntri35 7430 elixx3g 10105 elfz2 10219 elfzuzb 10223 divalgb 12444 1nprm 12644 issubg3 13737 cnfldui 14561 alsconv 16478 |
| Copyright terms: Public domain | W3C validator |