| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 850 excxor 1389 sbequ8 1861 2sb5 2002 2sb6 2003 2sb5rf 2008 2sb6rf 2009 moabs 2094 moanim 2119 2eu4 2138 2eu7 2139 sb8ab 2318 risset 2525 cbvreuvw 2735 reuind 2969 difundi 3416 indifdir 3420 unab 3431 inab 3432 rabeq0 3481 abeq0 3482 inssdif0im 3519 snprc 3688 snssOLD 3749 unipr 3854 uni0b 3865 pwtr 4253 opm 4268 onintexmid 4610 elxp2 4682 opthprc 4715 xpiundir 4723 elvvv 4727 relun 4781 inopab 4799 difopab 4800 ralxpf 4813 rexxpf 4814 dmiun 4876 rniun 5081 cnvresima 5160 imaco 5176 fnopabg 5384 dff1o2 5512 idref 5806 imaiun 5810 opabex3d 6187 opabex3 6188 onntri35 7320 elixx3g 9993 elfz2 10107 elfzuzb 10111 divalgb 12107 1nprm 12307 issubg3 13398 cnfldui 14221 alsconv 15811 |
| Copyright terms: Public domain | W3C validator |