![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcnnOLD 850 excxor 1389 sbequ8 1858 2sb5 1999 2sb6 2000 2sb5rf 2005 2sb6rf 2006 moabs 2091 moanim 2116 2eu4 2135 2eu7 2136 sb8ab 2315 risset 2522 cbvreuvw 2732 reuind 2965 difundi 3411 indifdir 3415 unab 3426 inab 3427 rabeq0 3476 abeq0 3477 inssdif0im 3514 snprc 3683 snssOLD 3744 unipr 3849 uni0b 3860 pwtr 4248 opm 4263 onintexmid 4605 elxp2 4677 opthprc 4710 xpiundir 4718 elvvv 4722 relun 4776 inopab 4794 difopab 4795 ralxpf 4808 rexxpf 4809 dmiun 4871 rniun 5076 cnvresima 5155 imaco 5171 fnopabg 5377 dff1o2 5505 idref 5799 imaiun 5803 opabex3d 6173 opabex3 6174 onntri35 7297 elixx3g 9967 elfz2 10081 elfzuzb 10085 divalgb 12066 1nprm 12252 issubg3 13262 cnfldui 14077 alsconv 15570 |
Copyright terms: Public domain | W3C validator |