| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 851 excxor 1398 sbequ8 1871 2sb5 2012 2sb6 2013 2sb5rf 2018 2sb6rf 2019 moabs 2104 moanim 2129 2eu4 2148 2eu7 2149 sb8ab 2328 risset 2535 cbvreuvw 2745 reuind 2980 difundi 3427 indifdir 3431 unab 3442 inab 3443 rabeq0 3492 abeq0 3493 inssdif0im 3530 snprc 3700 snssOLD 3762 unipr 3867 uni0b 3878 pwtr 4268 opm 4283 onintexmid 4626 elxp2 4698 opthprc 4731 xpiundir 4739 elvvv 4743 relun 4797 inopab 4815 difopab 4816 ralxpf 4829 rexxpf 4830 dmiun 4893 rniun 5099 cnvresima 5178 imaco 5194 fnopabg 5406 dff1o2 5536 idref 5835 imaiun 5839 opabex3d 6216 opabex3 6217 onntri35 7362 elixx3g 10036 elfz2 10150 elfzuzb 10154 divalgb 12286 1nprm 12486 issubg3 13578 cnfldui 14401 alsconv 16134 |
| Copyright terms: Public domain | W3C validator |