| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4ri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 185 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcnnOLD 850 excxor 1389 sbequ8 1861 2sb5 2002 2sb6 2003 2sb5rf 2008 2sb6rf 2009 moabs 2094 moanim 2119 2eu4 2138 2eu7 2139 sb8ab 2318 risset 2525 cbvreuvw 2735 reuind 2969 difundi 3415 indifdir 3419 unab 3430 inab 3431 rabeq0 3480 abeq0 3481 inssdif0im 3518 snprc 3687 snssOLD 3748 unipr 3853 uni0b 3864 pwtr 4252 opm 4267 onintexmid 4609 elxp2 4681 opthprc 4714 xpiundir 4722 elvvv 4726 relun 4780 inopab 4798 difopab 4799 ralxpf 4812 rexxpf 4813 dmiun 4875 rniun 5080 cnvresima 5159 imaco 5175 fnopabg 5381 dff1o2 5509 idref 5803 imaiun 5807 opabex3d 6178 opabex3 6179 onntri35 7304 elixx3g 9976 elfz2 10090 elfzuzb 10094 divalgb 12090 1nprm 12282 issubg3 13322 cnfldui 14145 alsconv 15724 |
| Copyright terms: Public domain | W3C validator |